

Sl. 7. Shematski prikaz spektrografa s jednom prizmom

Približno monokromatske slike pukotine $(\lambda_1 \ i \ \lambda_2)$ zapravo su figure difrakcije pravokutnog otvora snopa (v. *Optika*) dijafragmiranog ulaznom plohom prizme. Kutni razmak između centralnog maksimuma figure difrakcije i prvog minimuma jest $\pm \lambda/b$, gdje je b širina upadnog snopa. Rayleighov kriterij za razlučivanje valnih duljina $\Delta\lambda$ dviju susjednih linija jest da maksimum difrakcije druge linije pada u prvi minimum difrakcije prve linije. Tada je razlučivanje prizme

$$\frac{\lambda}{\Delta\lambda} = D \frac{\mathrm{d}n}{\mathrm{d}\lambda},\tag{4}$$

gdje je D najveća debljina stakla (baza prizme) kojom prolazi snop svjetlosti kroz prizmu, a $\frac{dn}{d\lambda}$ kut tangente na krivulju disperzije $n = f(\lambda)$ stakla iz kojeg je načinjena prizma, za valnu duljina λ . Relacija (4) pokazuje da je baza prizme jedini geometrijski faktor koji odlučuje o razlučivanju valnih duljina, iako u izvodu te relacije dolazi u obzir i razlučivanje objektiva. Razlog je u tome što je razlučivanje valnih duljina određeno djelomično širinom pukotine, a djelomično kutnom disperzijom prizme.

Spektrometar s difrakcijskom rešetkom. Tipičan primjer spektrometar kojemu je disperzijski element difrakcijska optička rešetka (v. *Optika*) jest npr. Ebert-Fastieov (1952) spektrometar brisač (engl. scanning spectrometar), kojemu je hod zraka prikazan na sl. 8. Svjetlost iz izvora kojemu se analizira spektralni sastav koncentrirana je na pukotinu S_1 u fokalnoj ravnini sfernog zrcala m, koje od divergentnog snopa

Sl. 8 Shematski prikaz Ebert-Fastieova spektrometra brisača

zraka tvori paralelni snop koji pada na rešetku G. Paralelni snop zraka, difraktiranih pod kutom ϑ za određenu valnu duljinu, reflektira se na sfernom zrcalu, a ono fokusira snop na izlaznu pukotinu S_2 . Rešetka se može zakretati u prikladnom kutnom intervalu oko vertikalne osi paralelne s brazdama rešetke. Oštra monokromatska slika (figura difrakcije) pukotine S_1 stvara se uvijek na istom mjestu S_2 . To je tzv. *autokolima*-

Tablica 1 KARAKTERISTIKE JEDNOG OD SPEKTROMETARA S DIFRAKCIJSKOM REŠETKOM

Disperzijski element	ravna ešelet-rešetka
Izbrazdana površina	$52 \times 52 \text{ mm}^2$
Gustoća brazda	1180 mm^{-1}
Odsjev pri valnoj duljini	400 nm
Moć razlučivanja $\lambda/\Delta\lambda$ (pri	
$\lambda = 600 \text{ nm i } p_1 = 1)$	30000
Linearna disperzija $\Delta \lambda / \Delta y$	
$(na S_2, za p_1 = 1)$	1,6 nm/mm
Dijametar kalote sfernog zrcala	0,15 m
Fokalna daljina sfernog zrcala	0,5 m
Efektivni otvor sfernog zrcala	1/18
Promjenljiva širina pukotine	53000 μm
Spektralno područje	~400…800 nm
Konfiguracija spektrometra	Littrowljeva
Zakretanje rešetke	kontinuirano
-	

cijska ili Littrowljeva konfiguracija spektroskopa ili spektrometra. Valna duljina svjetlosti koja pada na S_2 dana je jednadžbom rešetke (v. Optika, izraz (153)) ovisno o kutu upadanja α , kutu difrakcije ϑ i redu interferencije p_1 . U tabl. 1 nalaze se karakteristike jednog od spektrometara s difrakcijskom rešetkom. Uz optički uređaj potreban je i detektorski elektronički uređaj, npr. fotomultiplikator na koji upada svjetlost iz izlazne pukotine, te pojačalo i registrator.

M. Paić

OPTIKA (grč. $\partial \pi \tau \nu \partial \eta$ $\tau \ell \chi \eta$ optike tehne vidna vještina) područje fizike u kojem se proučavaju i praktično primjenjuju svjetlosne pojave. Iako su svjetlosne pojave zapažene, proučavane i primjenjivane još od antičkih kultura, optika se kao znanstvena disciplina počela razvijati u XVII stoljeću. Razvoju optike mnogo su pridonijeli W. Snellius (pravo ime Snell van Royen), M. De Dominis, R. Descartes (latinizirano Cartesius), F. de Fermat, Ch. Hugens, I. Newton, Th. Young, J. von Fraunhofer, A. J. Fresnel, H. Fizeau, J. C. Maxwell, M. Planck, A. Einstein i mnogi drugi. Razvoj optike nije ni do danas završen, a početkom šezdesetih godina našeg stoljeća izum lasera bio je velik poticaj daljim istraživanjima.

Narav svjetlosti. Svjetlošću se naziva elektromagnetsko zračenje valnih duljina $\sim 400 \cdots 700$ nm, koje u ljudskom oku pobuđuje osjet vida (v. *Fotometrija*, TE 5, str. 608).

Svojstva svjetlosti. Svjetlost je transverzalni, linearno polarizirani ravni val koji se u homogenom izotropnom prostoru širi stalnom brzinom. Jakost električnog polja \vec{E} i magnetskog polja \vec{H} (odnosno magnetska indukcija $\vec{B} = \mu_0 \vec{H}$) svjetlosnog vala jesu sinusne funkcije vremena i prostora. Vektori $\vec{E}(x,t)$ i $\vec{B}(x,t)$ okomiti su međusobno i na smjer širenja vala. Fizičke veličine, njihovi znakovi i relacije između fizičkih veličina važnih za elektromagnetski val i međudjelovanje njega i tvari jesu: *amplituda* \vec{E} ravnoga, linearno polariziranog, koherentnog monokromatskog vala, *jakost električnog polja* $\vec{E}(x,t)$ linearno polariziranoga, koherentnog monokromatskog vala na mjestu x i u trenutku t, te faze vala $\varphi(x,t)$ koja je funkcija prostora i vremena. Između njih vrijedi odnos

$$\vec{E}(x,t) = \vec{E}\exp(i\varphi), \tag{1}$$

koji se zove jednadžba ravnoga $(|\vec{E}| = \text{const.})$ progresivnog vala. Pisana je u kompleksnom obliku (i $\equiv \sqrt{-1}$). Samo realni dio te funkcije ima fizičko značenje, no kompleksni oblik veoma je podesan za matematičko operiranje valnim funkcijama. Za konkretni trenutak, npr. za t = 0, jednadžba

$$\vec{E}(x,0) = \vec{E} \exp\left[i\,\varphi(x,t)\right] \tag{2}$$

opisuje profil (oblik) vala ili trenutnu snimku vala. Isto vrijedi za bilo koji trenutak t.

Ako se val širi nepromijenjenim oblikom uzduž osi Ox, tada se u intervalu vremena Δt sve vrijednosti od $\vec{E}(x,t)$ pomaknu za x uzduž Ox. Za konkretno mjesto, npr. za x = 0, jednadžba

$$\vec{E}(0,t) = \vec{E} \exp\left[i\,\varphi(0,t)\right] \tag{3}$$

opisuje perturbaciju (promjenu) uzrokovanu na tom mjestu. Isto vrijedi za bilo koje mjesto x na osi Ox.

Vremenski period vala T definiran je jednadžbom

$$E(x,t + T) = E(x,t),$$
 (4)

a frekvencija (učestalost) vala relacijom

$$v = \frac{1}{T}.$$
 (5)

Prijelazom elektromagnetskog vala iz jednog sredstva u drugo frekvencija mu se najčešće ne mijenja, pa je

$$v_{\text{sredstvo}} = v_{\text{vakuum}}.$$
 (6)

odnosno

Kutna frekvencija (pulzacija) jest

$$\omega = 2\pi v = \frac{2\pi}{T}.$$
 (7)

Na danom mjestu val se ponavlja u vremenskom intervalu $2 \pi/\omega$.

Valna duljina (prostorni period) vala λ definiran je jednadžbom

$$E(x + \lambda, t) = E(x, t), \qquad (8)$$

 $\varphi(x+\lambda,t)=\varphi(x,t). \tag{9}$

Recipročna vrijednost valne duljine zove se valni broj

$$\sigma = \frac{1}{\lambda}.$$
 (10)

Vektor koji leži na pravcu širenja vala, i koji je prema tome normalan na valnu plohu, zove se valni vektor \vec{k} . Val se širi u smjeru \vec{k} ili $-\vec{k}$. Modul (iznos) valnog vektora, zvan i prostorna kutna frekvencija, jest

$$k = |\vec{k}| = \frac{2\pi}{\lambda}.$$
 (11)

U danom trenutku val se ponavlja u prostoru u razmacima $2 \pi/k$.

Fazna brzina elektromagnetskog vala u vakuumu iznosi

$$c = (\varepsilon_0 \mu_0)^{-1/2} \approx 2,99792458(1 \pm 4 \cdot 10^{-9}) \cdot 10^{-8} \text{ m/s}, \quad (12)$$

gdje je ε_0 apsolutna dielektričnost (permitivnost) vakuuma, a μ_0 apsolutna magnetska permeabilnost vakuuma. U bilo kojem sredstvu odnos je brzine, frekvencije i valne duljine

$$v = v \lambda_{\text{sredstvo}}.$$
 (13)

Fazna je brzina vala u nekom sredstvu

$$v = (\varepsilon_0 \varepsilon_r \mu_0 \mu_r)^{-1/2}, \qquad (14)$$

gdje je ε_r relativna dielektričnost, a μ_r relativna magnetska permeabilnost tog sredstva. Fazna brzina v u nekom sredstvu može biti manja, jednaka ili veća od brzine svjetlosti u vakuumu c.

Apsolutni indeks refrakcije (loma) sredstva kojim se širi val omjer je brzine širenja u vakuumu i u tom sredstvu

$$n = \frac{c}{v} = (\varepsilon_r \mu_r)^{1/2}.$$
(15)

Obično magnetska svojstva sredstva neznatno utječu na optičke pojave jer je $\mu_r \approx 1$, pa je indeks refrakcije

$$n \approx \sqrt{\varepsilon_{\rm r}}.$$
 (16)

Prema relacijama (11) i (13) apsolutni je indeks refrakcije

$$n = \frac{\lambda_{\text{vakuum}}}{\lambda_{\text{sredstvo}}},$$
 (17)

odnosno njegova recipročna vrijednost

$$\frac{1}{n} = \frac{k_{\text{vakuum}}}{k_{\text{sredstvo}}}.$$
(18)

Faza vala definirana je relacijom

$$\varphi = 2\pi \left[\frac{t}{T} \mp \frac{x}{\lambda_{\text{sredstvo}}} \right] = \omega t \mp k_{\text{sredstvo}} x =$$
$$= \omega \left[t \mp \frac{nx}{c} \right] = k_{\text{sredstvo}} (v t \mp x) = 2\pi v \left(t \mp \frac{x}{v} \right) =$$
$$= 2\pi \left[t \mp \sigma_{\text{sredstvo}} x \right]. \tag{19}$$

Negativan predznak opisuje širenje u pozitivnom smjeru osi Ox, a pozitivan predznak u negativnom smjeru.

Fazna brzina može se definirati i kao promjena puta po vremenu uz stalnu fazu

$$v = \frac{\mathrm{d}x}{\mathrm{d}t}\Big|_{\varphi} = -\frac{\frac{\partial\varphi}{\partial t}\Big|_{x}}{\frac{\partial\varphi}{\partial x}\Big|_{t}} = \frac{\omega}{k}.$$
 (20)

Ravni, harmonijski (sinusni), linearno polarizirani val koji se širi u smjeru radijvektora \vec{r} i kojemu je komponenta valnog vektora u tom smjeru jednaka \vec{k} opisan je relacijom

201

$$\vec{E}(\vec{r},t) = \vec{E} \exp\left[i\left(\omega t - \vec{k}\,\vec{r}\right)\right],\tag{21}$$

gdje je prema definiciji skalarni produkt vektora \vec{k} i radijvektora \vec{r} , s početkom u ishodištu koordinatnog sustava Oxyz, $\vec{k} \cdot \vec{r} = |\vec{k}| |\vec{r}| \cos(\vec{k}, \vec{r})$.

Ravnina koja prolazi točkom (x_0, y_0, z_0) , određenom i radijvektorom r_0 , a normalna je na vektor k, predočena je jednadžbom

$$\vec{k} \cdot (\vec{r} - \vec{r}_0) = 0,$$
 (22)

$$\vec{k} \cdot \vec{r} = \vec{k} \cdot \vec{r}_0 = \text{const.},\tag{23}$$

 \vec{r} je radijvektor neke točke (x, y, z) u istoj ravnini. U danom trenutku, npr. kad je t = 0, faza vala je $\varphi = \mp \vec{k} \cdot \vec{r}$. Ona je konstantna za čitavu ravninu koja se zove valna ploha ravnog vala.

Ravnina u kojoj vibrira električno polje $\vec{E}(\vec{r},t)$ jest ravnina vibracije linearno polariziranog vala (sl. 1).

Sl. 1. Isječak profila harmonijskoga (sinusnog) monokromatskog vala u trenutku t = 0. Valne plohe su ravnine paralelne s ravninom yz, a ravnine vibracije s ravninom xz

Navedene jednadžbe ravnog vala vrijede za $|\vec{r}|$, odnosno x, od $-\infty$ do $+\infty$. One ne predočuju potpuno fizičku stvarnost, ali su korisne idealizacije.

Zračenje iz prirodnih izvora svjetlosti nije nikada polarizirano u intervalima vremena u kojima se obično eksperimentira. Vektor amplitude zračenja \vec{E} ostaje normalan na smjer Ox ili na radijvektor \vec{r} širenja zračenja, ali se može smatrati da neprestano u vremenu mijenja svoj azimut. Takvo zračenje je *nepolarizirano*, *prirodno* ili *obično*. Ono je očito veoma važno. Prikazano je jednom od skalarnih relacija tipa

$$E(x,t) = E \exp[i(\omega t - kx)].$$
(24)

Sferični (kuglasti) harmonijski val koji divergira (u fazi negativan predznak) iz točkastog izvora ili konvergira (pozitivan predznak) u jednu točku prikazan je relacijom

$$E(r,t) = E_1 \frac{l_0}{r} \exp\left[i\left(\omega t + kr\right)\right].$$
(25)

gdje je l_0 jedinica duljine. Za dovoljno veliki r, u smjeru \vec{r} , kuglasti val prelazi u ravni val (21), jer je tada, naime, $E_1 \frac{l_0}{r} \approx E$ u (25), zbog toga što se omjer l_0/r malo mijenja sa t.

Kad se radi o prikazu jednoga jedinog vala, navedeni oblici pisanja (19) faze φ vala najčešće zadovoljavaju. Međutim, kad se radi o formuliranju pojava u kojima sudjeluje više valova kao što je npr. interferencija valova, potrebno je fazu bar jednog vala prikazati npr. u obliku

$$\varphi_1 = \omega t - kx + \delta_1. \tag{26}$$

Veličina δ_1 , odnosno općenito δ , jest razlika faza

$$=\varphi_2-\varphi_1\,,\qquad(27)$$

harmonijskih valova $E_2(x,t)$ i $E_1(x,t)$, a kompleksna amplituda vala je

δ

$$P = E \exp(i\delta). \tag{28}$$

Jednadžba ravnog vala, izražena pomoću kompleksne amplitude, glasi

$$E(x,t) = P \exp\left[i\left(\omega t - kx\right)\right].$$
(29)

Pokazalo se da je svjetlost veoma mali dio golemog spektra elektromagnetskih valova kojima se valne duljine protežu od nekoliko stotina metara (radio-valovi) do 10^{-12} m i manje (rendgensko zračenje, γ -zračenje). Pojam elektromagnetsko zračenje uključuje, dakle, svjetlost kao specijalni slučaj. Mnoge zakonitosti i pojave koje postoje za svjetlost vrijede i za elektromagnetske valove općenito.

Elektromagnetski linearno polarizirani val nosi u smjeru $\vec{E} \times \vec{B}$, tj. u smjeru vektorskog produkta tih veličina, srednju elektromagnetsku energiju

$$\overline{S} = c^2 \varepsilon_0 |\vec{E} \times \vec{B}| \cos^2(\omega t - kx), \tag{30}$$

što se, zbog prve Maxwellove jednadžbe prema kojoj je E = cB, može pisati

$$\overline{S} = \frac{c \,\varepsilon_0 \, E^2}{2}.\tag{31}$$

M. Planck je 1900. godine zamislio da je materija kvantizirana: oscilatori materije ne mogu primiti bilo koju količinu energije, već je mogu primiti samo u kvantima hv, gdje je $h = 6,626176 \cdot 10^{-34}$ Js Planckova konstanta ili Planckov kvant djelovanja.

A. Einstein je pretpostavio (1905. godine) da je svjetlost frekvencije v sastavljena od zrnaca ili *kvanata svjetlosti* ili, kako se danas kaže, *fotona*, od kojih svaki ima energiju

$$E = hv. (32)$$

Valna teorija i teorija fotona svjetlosti potrebne su za tumačenje svjetlosnih pojava.

Fizičke veličine izvora i prijamnika svjetlosti definirane su u članku *Fotometrija* (v. TE 5, str. 608).

Izvori zračenja

Neki primarni izvori zračenja. Od svih izvora zračenja za čovjeka je najvažnije Sunce. Ono zrači približno kao savršeno crno tijelo, prema Planckovu zakonu zračenja (v. Fotometrija, TE 5, str. 611). Sunce je prototip užarenog tijela kao izvora zračenja. Vidljiv je mali dio spektra Sunčeva zračenja. To je uglavnom kontinuirani spektar bijele termičke svjetlosti tijela koje je užareno na temperaturu ~6000 K s maksimumom radijancije pri valnoj duljini ~550 nm. U laboratoriju i u svakidašnjem životu najčešće se raspolaže užarenim tijelima kao izvorima termičkog zračenja ($T \approx 3000$ K) kojima je spektar pri istoj temperaturi pomaknut prema većim valnim duljinama u usporedbi sa spektrom Sunčeva zračenja, a radijancija im je osjetno manja od radijancije savršeno crnog tijela.

Električni luk vrsta je električnog izboja u plinu, najčešće u zraku, pri atmosferskom tlaku, između vodljivih elektroda, obično od grafita (H. Davy, 1862). Zbog visoke temperature $(T \approx 4000 \text{ K})$ električni luk je veoma intenzivan izvor zračenja. Ako se upotrebljava istosmjerni napon, tada je za dovoljnu udaljenost anodni krater približno točkast izvor.

Električna žarulja (Th. A. Edison, 1879) sastoji se danas od volframove niti (A. Jung i F. Hanaman, 1903) koja se žari prolazom električne struje. Nit je u staklenoj ili kvarcnoj posudi u kojoj je vakuum ili neki inertni plin kojemu može biti dodan i neki halogeni element. Temperatura je niti 2600...3000 K.

Električni izboj u plinovima. Atomi plinova pod malim tlakom, u dovoljno jakom električnom polju, mogu biti prevedeni (uzbuđeni) u više energetsko stanje. Prijelazom u niže energetsko stanje, u neometanoj emisiji, emitiraju karakteristični spektar, sastavljen većinom od uskih spektralnih vrpca ili spektralnih linija (sl. 2a). Pod visokim tlakom atomi su ometani u emisiji, pa se spektar sastoji od proširenih linija između kojih se pojavljuje kontinuirani spektar, slično kao pri užarenom tijelu (sl. 2b). Neke vrste plinskih lasera (v. *Laser*, TE 7, str. 465), posebno laser He-Ne, koji spadaju u grupu izvora pobuđenih električnim poljem, ali su intenzivni, emitiraju koherentno, često linearno polarizirano i paralelno zračenje, pa su zbog toga veoma prikladni za mnoge eksperimente u optici.

Neki sekundarni izvori zračenja. Ploha koja razdvaja dva sredstva različitih indeksa refrakcije najčešće samo djelomično reflektira upadni tok zračenja. Već prema svojstvu površine, koja može biti zrcalna ili hrapava (mat), ili može imati međusvojstvo, refleksija je svjetlosti zrcalna ili difuzna, ili mješavina jednoga i drugog načina refleksije. Ozračena je površina sekundarni izvor zračenja nastao refleksijom.

Sloj tvari može nereflektirani dio toka svjetlosti djelomično apsorbirati (upiti), a djelomično transmitirati (propustiti). Time nastaje sekundarni izvor zračenja transmisijom.

Optička svojstva materije

Refleksija neke površine karakterizira se reflektancijom površine (faktorom refleksije) ϱ koja je određena omjerom

$$\varrho = \frac{\Phi_{\rm r}}{\Phi_{\rm i}},\tag{33}$$

gdje je Φ_i upadni fluks zračenja, a Φ_r reflektirani fluks od površine. Pri tom može biti Φ_i sastavljen od beskonačnog niza monokromatskih fluksova koji ne moraju svi imati međusobno jednake monokromatske reflektancije

$$\varrho_{\lambda} = \frac{\Phi_{\rm r}}{\Phi_{\rm j}}.\tag{34}$$

Ukupna relativna apsorpcija nekog sloja tvari karaterizira se apsorptancijom sloja (faktorom apsorpcije) α koja je definirana omjerom

$$\alpha = \frac{\Phi_{\alpha}}{\Phi_{\rm i}},\tag{35}$$

656

gdje je Φ_{α} apsorbirani fluks zračenja, ovisan o svojstvu tvari i debljini sloja. Monokromatski fluks $\Phi_{\lambda}(\lambda)$ obično je izrazita funkcija valne duljine ili frekvencije zračenja. Ukupni relativni transmitirani fluks kroz neki sloj karakteriziran je *transmitancijom* sloja (*faktorom transmisije*) τ koja je određena omjerom

$$\tau = \frac{\Phi_{\rm t}}{\Phi_{\rm i}},\tag{36}$$

gdje je Φ_t transmitirani fluks zračenja, ovisan o svojstvu tvari i debljini sloja. Zbog zakona sačuvanja energije mora biti za isti sloj

$$\varrho + \alpha + \tau = 1. \tag{37}$$

Koeficijent apsorpcije i ekstinkcije. Apsorpcija zračenja, karakteristična za tvar koja apsorbira zračenje (upija), izražava se *linearnim koeficijentom apsorpcije (linearni koeficijent upijanja*) koji se odnosi na zračenje u unutrašnjosti tvari.

Unutar izotropnog sredstva, zanemarljiva raspršenja, neka se širi fluks paralelnoga monokromatskog zračenja. Paralelno s fluksom stavljena je u sredstvu os Oz (sl. 3a). U nekoj točki z fluks je zračenja Φ_{λ} . Na putu od z do z + dz on je, zbog apsorpcije, oslabljen na $\Phi_{\lambda} - d\Phi_{\lambda}$. Smatra se da vrijedi diferencijalna jednadžba

$$\mathrm{d}\Phi_{\lambda} = -\Phi_{\lambda}a_{\mathrm{n}}\mathrm{d}z, \qquad (38)$$

koja integracijom od 0 do z daje

$$\Phi_{\lambda} = \Phi_{\lambda i} \exp(-a_{n} z), \qquad (39)$$

gdje je Φ_i upadni fluks na mjestu gdje je apscisa z = 0, dok je a_n linearni koeficijent apsorpcije tvari. Indeks n napominje da je a_n u eksponentu baze prirodnih logaritama e. Jedinica je koeficijenta apsorpcije, prema SI, recipročni metar (m⁻¹).

Sl. 3. Apsorpcija svjetlosti. *a* model opadanja svjetlosnog toka pri prolazu kroz materiju, *b* spektar apsorpcije vodene otopine metilnog modrila $\varepsilon_{\rm C}(\lambda) = f(\lambda)$, grafički prikazan u obliku lg $\varepsilon =$ $= g(\sigma)$, koji je često najprikladniji ($\sigma \equiv 1/\lambda$)

U praksi apsorpcijske spektrometrije uobičajena je upotreba koeficijenta apsorpcije a koji se odnosi na bazu 10:

$$a \approx \frac{a_{\rm n}}{2,30259}.$$
 (40)

Fluksove $\Phi_{\lambda i}$ i Φ_{λ} u zamišljenom opisanom eksperimentu (sl. 3 a) nije moguće neposredno mjeriti, osim u fluidima. Ako su tijela čvrsta, detektori upadnog i transmitiranog zračenja moraju biti izvan tijela. Tada se na ulaznoj i izlaznoj plohi planparalelnog sloja tvari svjetlost reflektira, pa se to mora uzeti u obzir upotrebom posebnih metoda.

Radi kemijske analize često se upotrebljavaju spektri apsorpcije otopina kemijskih spojeva. Nastoji se odabrati otapalo koje ne apsorbira zračenje u području u kojemu ga istraživani spoj apsorbira. Otopina se stavlja u staklenu kivetu planparalelnih, staklenih ili kvarcnih, prozirnih stijenki. Utjecaj se refleksije eliminira tako da se $\Phi_{\lambda t1}$ uzima kao fluks koji je prošao kroz kivetu napunjenu otapalom, a $\Phi_{\lambda t2}$ kao fluks koji je prošao krozkivetu napunjenu otopinom. Tada vrijedi Bougeur-Lambert-Beerov zakon koji glasi

$$\Phi_{\lambda t2} = \Phi_{\lambda t1} \cdot 10^{-\varepsilon c z}, \qquad (41)$$

gdje je $\varepsilon = a/c$ molarni linearni koeficijent apsorpcije (mol⁻¹m²), a linearni koeficijent apsorpcije (m^{f-1}), c koncentracija otopine (mol/m³), a z debljina sloja otopine (m).

Monokromatska je apsorbancija otopine

$$A(\lambda) = \lg \left(\frac{\Phi_{\lambda t1}}{\Phi_{\lambda t2}} \right) = \varepsilon(\lambda) c z .$$
(42)

Često se istražuje spektar $\varepsilon_c(\lambda)$ molarnog linearnog koeficijenta apsorpcije pri konstantnoj koncentraciji c, pri kojoj je $\varepsilon_{\lambda}(c) \approx \text{const.}$ Tada je $\varepsilon_c(\lambda)$ karakteristična funkcija otopljene tvari. Najprikladnije je prikazati dobivene rezultate u obliku $\lg \varepsilon_c(\lambda) = f(\sigma)$, gdje je $\sigma = 1/\lambda$ (sl. 3b).

Ako sredstvo apsorbira i raspršuje zračenje, paralelni fluks zračenja koji prolazi sredstvom slabi zbog apsorpcije i zbog raspršenja, jer se raspršenjem zračenje otklanja u različite smjerove, pa je zato fluks zračenja u prvobitnom smjeru oslabljen. Za takvo sredstvo vrijede simultane diferencijalne jednadžbe za slabljenje fluksa zbog raspršenja

$$\mathrm{d}\Phi_{\lambda s} = -s_{\mathrm{n}}\Phi_{\lambda}\mathrm{d}z \tag{43}$$

i zbog apsorpcije

$$\mathrm{d}\Phi_{\lambda \mathrm{a}} = -a_{\mathrm{n}}\Phi_{\lambda}\mathrm{d}z\,,\tag{44}$$

gdje su s_n i a_n linearni koeficijenti raspršenja i apsorpcije. Na putu dz fluks je zračenja oslabljen za

$$\mathrm{d}\Phi_{\lambda} = -\left(a_{\mathrm{n}} + s_{\mathrm{n}}\right)\Phi_{\lambda}\mathrm{d}z\,. \tag{45}$$

Integracijom od 0 do z i od $\Phi_{\lambda i}$ do Φ_{λ} dobiva se transmitirani fluks kroz sloj debljine z:

$$\Phi_{\lambda t} = \Phi_{\lambda i} \exp\left[-(a_{n} + s_{n})z\right].$$
(46)

Ukupni koeficijent slabljenja $a_n + s_n = \mu_n$ je koeficijent ekstinkcije.

Veličina

$$\lg\left(\frac{\Phi_{\lambda i}}{\Phi_{\lambda e}}\right) = (a+s)z \equiv E \tag{47}$$

jest monokromatska ekstinkcija. Kad $s \rightarrow 0$, ekstinkcija prelazi u apsorbanciju A, prema jednadžbi (42).

Slaba i jaka apsorpcija. Važno je znati koliki je srednji put \overline{s} potreban da unutrašnja transmitancija $\Phi_{\lambda l}/\Phi_{\lambda i}$ u promatranoj materiji padne na vrijednost $1/e \approx 0.3678$. Prema (46), ako je $z = \overline{s}$, dobiva se

$$\overline{s} = \frac{1}{\mu_{\rm n}}.\tag{48}$$

Put \overline{s} je srednji domet zračenja. Smatra se da je apsorpcija slaba ako je $\overline{s} > \lambda$ ili $\lambda/\overline{s} < 1$; apsorpcija je jaka ako je $\overline{s} < \lambda$ ili $\lambda/\overline{s} > 1$.

Povezivanje koeficijenta apsorpcije i pripadne valne duljine u jednu veličinu dovodi do teorijski važnog pojma *indeksa apsorpcije sredstva*. Prema definiciji indeks je apsorpcije

$$\varkappa = \frac{a_n \lambda}{4 \, \pi},\tag{49}$$

koji je bezdimenzijska veličina.

Uvođenje indeksa apsorpcije osobito je korisno kad se proučavaju optička svojstva tvari koje veoma apsorbiraju. Makroskopska optička svojstva bilo kakva homogenog sredstva potpuno su određena njegovim indeksom refrakcije i indeksom apsorpcije.

Stakleni filtri zračenja. Danas se mogu kupiti serije tzv. staklenih filtara zračenja, u obliku planparalelnih ploča, za koje proizvođač daje krivulje ovisnosti interne transmitancije o valnoj duljini (sl. 4a i b). Praktički su interesantni spektri transmitancije stakala za naočale (sl. 5). Lako se može naći da je u svim tim filtrima apsorpcija slaba.

Sl. 4. Grafički prikaz ovisnosti interne transmitancije $\tau_{\lambda i}$ o valnoj duljini λ , a za stakleni filtar u vidljivom i infracrvenom području; b za isti stakleni filtar u infracrvenom području

Sl. 5. Grafički prikaz ovisnosti interne transmitancije, zajedno s reflektancijom na ulaznoj i izlaznoj plohi, o valnoj duljini. 1 za obične naočale, 2 za obojene (tzv. sunčane) naočale, 3 za naočale Polaroid

Kompleksni indeks refrakcije. Širi li se elektromagnetski val u sredstvu indeksa apsorpcije \varkappa , njegova se amplituda smanjuje proporcionalno sa $\exp\left(-\omega \varkappa \frac{x}{c}\right)$, gdje je os x smjer širenja vala. Jednadžba vala tada glasi

$$E(x,t) = E \exp\left(-\omega \varkappa \frac{x}{c}\right) \exp\left[i\omega\left(t-n\frac{x}{c}\right)\right].$$
 (50)

Eksponenti se mogu svesti na oblik $i\omega \left[t - (n - i\varkappa)\frac{x}{c}\right]$, pa jednadžba (50) glasi

$$E(x,t) = E \exp i \omega \left[t - \left(n - i \varkappa \right) \frac{x}{c} \right].$$
 (51)

Veličina

$$n' = n - i\varkappa \tag{52}$$

jest kompleksni indeks refrakcije. On sadrži obje fundamentalne veličine, $n i \times$. Uvođenje kompleksnog indeksa refrakcije veoma pojednostavnjuje račun ako sredstvo jako apsorbira. Računa se kao da sredstvo ne apsorbira, a u dobivenim rješenjima realni indeks refrakcije zamjenjuje se kompleksnim. Tako, npr., pri normalnom upadanju Fresnelove jednadžbe daju za omjer reflektirane i upadne amplitude vala, izražene pomoću relativnih indeksa refrakcije između dva sredstva,

$$\frac{E_{\rm r}}{E_{\rm i}} = -\frac{n_{21} - 1}{n_{21} + 1}.$$
(53)

Ako za jedno od sredstava indeks apsorpcije nije jednak nuli, treba u (53) uvrstiti kompleksni indeks refrakcije, pa se za omjer kompleksnih amplituda dobiva

$$\frac{E'_{\rm r}}{E'_{\rm i}} = -\frac{n_{21} - i\varkappa - 1}{n_{21} - i\varkappa + 1}.$$
(54)

Omjer kvadrata amplituda jednak je reflektanciji (33), što daje važnu Beerovu relaciju pri normalnom upadu

$$\varrho_{\lambda} = \frac{(n_{21} - 1)^2 + \varkappa^2}{(n_{21} + 1)^2 + \varkappa^2}.$$
(55)

Velika reflektancija može biti uzrokovana velikim indeksom apsorpcije.

Difuzno remitirano zračenje. Obično čovjek izbjegava gledati neposredno primarne izvore svjetlosti. On promatra gotovo uvijek sekundarne izvore svjetlosti kojima je neprestano okružen. Naime, ako na površinu nekog predmeta pada svjetlost, ona djelomično prodire i u njegovu unutrašnjost. *Refleksijska spektrometrija* istražuje to remitirano zračenje. Za teoriju i za primjene najpovoljnije je da se sekundarno zračilo vlada prema Lambertovu zakonu kosinusa, koji se, za monokromatsko zračenje, tada u diferencijalnom obliku piše

$$d^{2}\Phi_{\lambda}(\text{rem.}) = L_{\lambda}(\text{rem.})dSd\Omega\cos\vartheta; \qquad (56)$$

$$L_{\lambda}(\text{rem.}) = \text{const.},$$

što znači da je tada radijancija L_{λ} (rem.) površine proporcionalna iradijanciji. Ako E_{λ} označuje monokromatsku iradijanciju, tada je

$$d^{2}\Phi(\text{rem.}) = \frac{1}{\pi} \varrho_{\lambda} E_{\lambda} dS d\Omega \cos \vartheta, \qquad (57)$$

gdje je ϱ_{λ} monokromatska reflektancija (34) veličina svojstvena materiji. Njena je ovisnost o valnoj duljini karakteristična funkcija ispitivane tvari. Najčešće se mjeri relativna monokromatska reflektancija beskonačno debelog sloja uzorka s obzirom na neku bijelu standardnu površinu, npr. barij-sulfat. Tada je

$$\varrho_{\lambda\infty}' \equiv \frac{d^2 \Phi_{\lambda}(\text{rem. uz.})}{d^2 \Phi_{\lambda}(\text{rem. st.})}.$$
(58)

Monokromatska radijancija takva sekundarnog izvora zračenja (uzorka) jest, prema (57), ako je $\rho_{\lambda}(st.) \approx 1$,

$$L_{\lambda}(\text{rem. uz}) \approx \frac{1}{\pi} \varrho'_{\infty}(\text{uz.}) E_{\lambda}.$$
 (59)

Međutim, određivanje $\varrho'_{\lambda\infty}$ nije konačni cilje spektrometrije difuzno reflektiranog zračenja. Jasnije informacije o svojstvima tvari daje njen koeficijent apsorpcije. Za Lambertov sekundarni radijator Kubelka-Munkova funkcija $F(\varrho'_{\infty})$ dana je relacijom

Sl. 6. Usporedba koeficijenta apsorpcije a i Kubelka-Munkove transformacije $F(g'_x)$ zelenog mangan-sulfida u prahu i u monokristalu za niz valnih brojeva σ

$$F(\varrho_{\infty}') = \frac{\left(1 - \varrho_{\infty}'\right)^2}{2\varrho_{\infty}'} \approx \frac{a}{s},\tag{60}$$

gdje je *a* linearni koeficijent apsorpcije tvari, a *s* linearni koeficijent raspršenja uzorka. Pri tom treba imati u vidu da se za *male* koeficijente apsorpcije, u uskom intervalu valnih brojeva, *s* može smatrati konstantnim, pa je $F(\varrho'_{\alpha})(\sigma) \approx a(\sigma)$. Međutim, pri znatnoj apsorpciji, reflektancija postaje funkcija kompleksnog indeksa refrakcije (52), pa koeficijent raspršenja nije više konstantan. Ipak funkcija $F(\varrho',)(\sigma)$ može biti važna, osobito ako služi u komparativne svrhe. Na sl. 6 prikazan je spektar apsorpcije i sepktar Kubelka-Munkove transformacije zelenog α-mangan-sulfida. Oba spektra, u logaritamskom mjerilu, praktički su dovedena u koincidenciju na čitavom području ispitivanog spektra. Samo je najistaknutiji apsorpcijski maksimum mnogo viši (Hufmann i Wild, 1967) nego pripadni maksimum Kubelka--Munkove funkcije (M. Paić i V. Paić, 1973).

GEOMETRIJSKA OPTIKA

Svrha je geometrijske optike pronalaženje zakonitosti koje se odnose na *stvaranje slika* pomoću optičkih sistema. U prvoj aproksimaciji može se geometrijska optika obraditi polazeći od četiri eksperimentalna zakona koji se odnose na širenje svjetlosti, refleksiju, refrakciju i povratak svjetlosti kroz sistem.

Zakon širenja svjetlosti. U geometrijskoj optici narav svietlosti nije bitna. Pretpostavlja se da je svjetlost neka perturbacija koja se u homogenom, izotropnom i transparentnom (prozirnom) sredstvu širi u pravcima. Takvo sredstvo naziva se i dioptrijsko sredstvo. Smatra se da postoje idealni točkasti izvori i da nema difrakcije (ogiba) svjetlosti na zaprekama. Prema takvoj predodžbi zakon širenja svjetlosti glasi: U homogenom izotropnom sredstvu svjetlost se širi u pravcima. Izvedeni pojmovi su tada zraka svjetlosti i snop svjetlosti. Zraka svjetlosti može biti realna ili virtualna. Realnom zrakom svjetlost se stvarno širi. Virtualna zraka je samo pravocrtno produženje realne zrake. Iz točkastog izvora svjetlosti izlaze, u homogenom dioptrijskom sredstvu, zrake svjetlosti u sve smjerove prostora. Pomoću neprozirnog zastora (zaslona) u kojemu je učinjen neki otvor može se ograničiti širenje svjetlosti u dijelu prostora iza zastora. U taj dio prostora ulazi samo snop svjetlosti unutar stošca s vrhom u točkastom izvoru, a s izvodnicama koje određuje rub otvora u zastoru. Ako je otvor kružnog oblika, tada se zastor zove dijafragma. Iz izvora izlazi tada realni divergentni snop svjetlosti. Pomoću optičkih sistema moguće je dobiti snop zraka svjetlosti koje se sastaju u jednoj točki. To je konvergentni snop. Konični snopovi su karakterizirani otvorom snopa koji je definiran polovicom kuta na vrhu stošca.

Zakon refleksije. Zraka svjetlosti reflektira (odbija) se tako da ostaje u ravnini upadanja, tj. u ravnini određenoj normalom na ravninu refleksije i upadnom zrakom. Kut između normale na ravninu refleksije i upadne zrake zove se *kut upadanja*. Kut između normale na ravninu refleksije i reflektirane zrake jest *kut refleksije*. Zakon refleksije glasi: Upadna i reflektirana zraka nalaze se u ravnini upadanja, a kut refleksije ψ jednak je kutu upadanja φ (sl. 7).

Zakon refrakcije. Na dioptrijskoj plohi koja dijeli dva dioptrijska sredstva zraka svjetlosti mijenja pravac širenja. To je pojava refrakcije (loma, prelamanja) svjetlosti. Zakon refrakcije glasi: Refraktirana zraka (sl. 8) je u ravnini upadanja, a omjer je sinusa kuta upadanja φ i sinusa kuta refrakcije χ konstantan za konstantnu valnu duljinu i za dva dioptrijska sredstva (W. Snellius, 1618). Prema tome vrijedi relacija

$$\frac{\sin\varphi}{\sin\gamma} = \text{const.} \tag{61}$$

Konstantni omjer sinusa kuta upadanja i sinusa kuta refrakcije, za određenu valnu duljinu, za dioptrijsko sredstvo 1 iz kojeg zraka izlazi i za dioptrijsko sredstvo 2 u koje zraka ulazi jest relativni indeks refrakcije n_{21} te svjetlosti za ta dva sredstva:

$$\frac{\sin\varphi}{\sin\gamma} = n_{21}.$$
 (62)

Indeks refrakcije nekog sredstva s obzirom na vakuum jest apsolutni indeks refrakcije n. Apsolutni indeks refrakcije zraka pri temperaturi 273,15 K i tlaku od 101,325 kPa jest 1,000293.... U prvoj aproksimaciji relativni indeks refrakcije s obzirom na zrak približno je jednak apsolutnom indeksu refrakcije tvari.

Sl. 8. Ilustracija refrakcije svjetlosti na granici dvaju sredstava. z_1 upadna zraka, z_2 reflektirana zraka, z_3 refraktirana zraka

S obzirom na dioptrijska sredstva može biti $n_1 < n_2$ ili $n_1 > n_2$. Kad je $n_1 < n_2$, zraka prelazi iz optički rjeđega u optički gušće sredstvo. Kad je $n_1 > n_2$, zraka svjetlosti prelazi iz optički gušćega u optički rjeđe sredstvo. Prema (62) vrijedi

$$\sin\chi = \frac{n_1}{n_2}\sin\varphi,\tag{63}$$

a ako je $n_1 < n_2$, upadna zraka može uvijek prijeći iz jednog sredstva u drugo sredstvo za sve moguće kutove upadanja, $\varphi = 0...\pi/2$, i uvijek je sin $\chi < \sin\varphi$, odnosno $\chi < \varphi$. To znači da se zraka svjetlosti pri prijelazu iz optički rjeđega u optički gušće sredstvo uvijek refraktira prema normali. Ako je $n_1 > n_2$, mora biti sin $\chi > \sin\varphi$, odnosno $\chi > \varphi$. Ako zraka svjetlosti prelazi iz optički gušćega u optički rjeđe sredstvo, ona se reflektira od normale. Kut upadanja ne može prijeći neku određenu vrijednost φ_1 , za koju je $\chi = \pi/2$, odnosno

$$\sin\varphi_{t} = \frac{n_2}{n_1} \tag{64}$$

što definira kut totalne refleksije φ_t . Postane li kut upadanja φ veći od φ_t , zraka svjetlosti, u aproksimaciji geometrijske optike, ne prolazi kroz dioptrijsku plohu, već se totalno reflektira. Refleksiju, refrakciju i totalnu refleksiju prikazuje sl. 9.

Totalna refleksija svjetlosti danas je u centru pažnje za brzo prenošenje informacija pomoću stalenih vlakana dijametra 10...12 µm, na udaljenost i do nekoliko kilometara (v. *Optičke elektrokomunikacije*). Vlakno se sastoji bilo od dva sloja stakla različitih indeksa refrakcije, bilo od vanjskog sloja konstantnog indeksa refrakcije i jezgre kojoj se indeks refrakcije mijenja aksijalno simetrično od indeksa refrakcije plašta do maksimal-

Sl. 9. Fotografija (pozitiv) višestruke totalne refleksije svjetlosnog snopa u plankonveksnoj leći

nog indeksa refrakcije jezgre. Primjeri vlakana, vodiča svjetlosti (svjetlovoda), prikazani su na sl. 10. Indeks je refrakcije jezgre npr. 1,63, a plašta 1,52. Maksimalni kut koji zraka svjetlosti smije zatvarati s osi vlakna, a da bi u navedenim uvjetima još bila vođena, iznosi 32°. Propusnost za zračenje je u području od 350...2000 nm. Vlakna dijametra 10 µm mogu se savijati na najmanji dopustivi radijus zakrivljenosti od 1 mm, a vlakna debljine 70 µm na radijus od 12 mm. Vlakna se mogu slagati u svežnjeve, pa nastaje neka vrsta svjetlosnih kabela. Svežnjevi imaju najčešće kružni presjek, a tako su fleksibilni da se mogu savijati na radijuse od samo nekoliko centimetara. Kvaliteta kabela mjeri se opadanjem svjetlosnog fluksa po duljini. U takvim optičkim komunikacijama upotrebljavaju se kao izvori laseri čvrstog stanja (v. Laseri, TE 7, str. 465) koji emitiraju koherentno zračenje iz veoma malog izvora, reda veličine dijametra jezgre vlakna. Ti laseri mogu biti veoma brzo modulirani, pa se jednim vlaknom može veoma brzo slati mnogo informacija.

Sl. 10. Radijalni i aksijalni presjek staklenog vlakna koje se ponaša kao svjetlovod sa svjetlosnim zrakama te grafički prikaz ovisnosti indeksa refrakcije n o radijusu r sloja. a za skokovitu promjenu indeksa refrakcije s radijusom; b za kontinuiranu paraboličnu promjenu

Svježnjevi mogu biti sastavljeni od vlakana promjenljive debljine tako da se postiže promjena presjeka fluksa svjetlosti, npr. iz kružnoga u pravokutni, iz maloga u veliki itd., što omogućuje preslikavanje prikladnim oblikovanjem početka i kraja vlakna.

Tanki gibljivi vodiči svjetlosti danas se mnogo primjenjuju u medicinskoj i tehničkoj dijagnostici jer se pomoću njih mogu osvijetliti i tako promatrati unutrašnjost nekih organa, uređaja itd. Zakon povratka svjetlosti. Iz točkastog izvora svjetlosti A izlazi zraka svjetlosti i dolazi u neku točku B prostora po bilo kakvu putu, pretrpjevši pri tom bilo koji broj refleksija i refrakcija (sl. 11). Zakon povratka svjetlosti glasi: Ako iz točke A, kao izvora svjetlosti, zraka dolazi bilo kakvim putem do točke B i nju osvjetljuje, točka A bit će osvijetljena ako je točka B postala izvorom svjetlosti.

Stvaranie slika pomoću optičkih sistema. Optički sistem skup je homogenih, prozirnih ili samo reflektirajućih sredstava, poredanih, u optičkom smislu, jedno iza drugog, a odijeljenih dioptrijskim plohama. Posebno su važni centrirani sistemi. Plohe su centriranog sistema najčešće sferne (kuglaste) plohe, rotacijske simetrije, poredane tako da im se te osi podudaraju. U geometrijskoj optici istražuje se sposobnost nekog centriranog sistema da od nekog predmeta daje sliku, drugim riječima istražuje se stigmatičnost sistema. Dovoljno je naći u kojim uvjetima sistem od jedne točke predmeta daje točkastu sliku, jer se predmet uvijek može smatrati sastavljenim od beskonačno mnogo točkastih izvora. Stigmatični sistem ima sljedeća svojstva: a) da od divergentnog snopa zraka tvori konvergentni snop, pa su tada predmet i slika realni; b) da od divergentnog snopa zraka tvori divergentni snop, pa je tada predmet realan, a slika virtualna; c) da od konvergentnog snopa zraka tvori konvergentni snop, pa je tada predmet virtualan, a slika realna: d) da od konvergentnog snopa zraka tvori divergentni snop, pa su tada predmet i slika virtualni.

Optički sistem koji od točkastog predmeta daje točkastu sliku stigmatičan je za taj par točaka. Te točke zovu se *stigmatične* ili *konjugirane točke* sistema.

Katoptrijski sistemi

Katoptrijski sistemi sastavljeni su samo od zrcalnih ploha. Ploha svakog zrcala stigmatičnog za par točaka jest rotacijska ploha kojoj je os rotacijske simetrije pravac kroz te dvije točke. Postoji 12 različitih zrcalnih ploha stigmatičnih s obzirom na narav izvora i slike te s obzirom na njihov položaj prema zrcalnoj plohi. Najvažnije su četiri takve plohe.

Elipsoidna zrcala. Plohe stigmatične refleksijom za dvije realne točke u međusobno konačnoj daljini jesu *konfokalni rotacijski elipsoidi* kojima unutrašnja površina reflektira, a fokusi su elipsoida konjugirane točke sistema (sl. 12a). Ako su predmet i slika virtualni i u konačnoj daljini, stigmatična ploha je rotacijski elipsoid kojemu vanjska ploha reflektira (sl. 12b). Prema dogovoru sa *I* se označuje izvor, a sa *I*' slika.

Sferna zrcala. Približuju li se konjugirane točke I i I' jedna drugoj, oblik stigmatične plohe približuje se kugli. Kad I i I' padnu u jednu točku, stigmatična ploha je sfera u centru koje su predmet i slika. Ako unutrašnja ploha sfere reflektira, sferno zrcalo je konkavno (sl. 12 c). Ako vanjska ploha reflektira, predmet i slika su virtualni; sferno zrcalo je konveksno (sl. 12 d).

Slike predmeta koji nisu u centru sfernog zrcala ili na površini zrcala nisu savršene s geometrijsko optičkog gledišta. To, međutim, nema praktične važnosti. Sferno je zrcalo strogo stigmatično za svoj centar zakrivljenosti. No, ono daje obično dovoljno dobre slike i u nekim drugim slučajevima: u blizini centra i ako su zadovoljene takozvane Gaussove aproksimacije. Ono je tada približno stigmatično.

Sferno zrcalo je približno stigmatično za male predmete u blizini centra zrcala. Slika i predmet su centralno simetrični

Sl. 12. Zakrivljena zrcala. *a* konkavno elipsoidno, *b* konveksno elipsoidno, *c* konkavno sferno, *d* konveksno sferno zrcalo

s obzirom na centar zrcala. Realnom predmetu odgovara realna slika (sl. 13 a), virtualnom predmetu odgovara virtualna slika (sl. 13 b). Pri tom velika površina zrcala pridonosi stvaranju slike, pa je slika znatne radijancije.

Sl. 13. Sferno zrcalo je približno stigmatično za predmet blizu centra zrcala. a konkavno zrcalo daje od realnog predmeta realnu sliku; b konveksno zrcalo daje od virtualnog predmeta virtualnu sliku

Dovoljno dobre slike daje sferno zrcalo ako se od reflektirane svjetlosti, prvobitno proizašle iz točkastog predmeta I, upotrijebi snop malog otvora ϑ (sl. 14). Približna se stigmatičnost veoma poboljšava ako se upotrijebi snop malog otvora kojemu se srednja zraka podudara s glavnom osi zrcala (*paraksijalne zrake*). Tada vrijede Gaussove aproksimacije. Sferno zrcalo daje zadovoljavajuću sliku malog ravnog predmeta koji se nalazi u blizini glavne osi (osi rotacijske simetrije zrcala), a predmet je normalan na tu os. Slika je ravna i normalna na glavnu os zrcala. Ravnina predmeta i ravnina slike jesu *konjugirane ravnine*, kojima se međusobni položaj može odrediti jednadžbom konjugacije:

$$\frac{1}{x} + \frac{1}{x'} = \frac{1}{f},$$
(65)

gdje su x i x' ordinate položaja ravnine predmeta x, odnosno ravnine slike x' s obzirom na ishodište T u tjemenu zrcala, a f je fokalna (žarišna) daljina sfernog zrcala (sl. 15):

$$f = \frac{TC}{2} = \frac{R}{2},\tag{66}$$

gdje je R radijus zakrivljenosti zrcala, a ordinate x i x' i fokalna daljina f jesu algebarske veličine. One su pozitivne kad su u smjeru reflektirane svjetlosti, ako se računa od ishodišta T (sl. 15).

Sl. 15. Položaj centra i fokusa sfernog zrcala (ordinata je pozitivna u smjeru reflektirane zrake). a konkavno zrcalo, b konveksno zrcalo

Linearno povećanje γ definira se kao omjer jedne dimenzije slike, npr. $\overline{I'_1 I'_2}$, i njene konjugirane veličine, npr. $\overline{I_1 I_2}$. Ako je I_1 na glavnoj osi zrcala, a I_2 je na normali na glavnu os kroz I_1 , onda je, za $\overline{I'_1 I'_2} \equiv y'$ i $\overline{I_1 I_2} \equiv y$,

$$\gamma = \frac{y'}{y} = -\frac{x'}{x}.$$
(67)

Kad je $\gamma > 0$, slika je uspravna, a obrnuta kad je $\gamma < 0$. Za predmet u blizini centra sfernog zrcala uvijek je $\gamma = -1$. Sferno zrcalo ima tri kardinalne točke: *centar zrcala*, koji je sam sebi slika; *fokus slike F'* (žarište, žiža), tj. točku na glavnoj osi zrcala koja je slika točkastog predmeta u beskonačnosti na toj osi; *fokus predmeta F*, tj. točku na glavnoj osi zrcala kojoj je slika u beskonačnosti na istoj osi. Oba fokusa sfernog zrcala padaju u istu točku $F \equiv F'$, za koju vrijedi $f \equiv f' \equiv R/2$, gdje je *f* fokalna daljina predmeta, a *f'* slike. Pomoću kardinalnih točaka sfernog zrcala moguće je, upotrebom Gaussovih aproksimacija, konstrukcijom naći sliku predmeta (sl. 16a i b). Konkavna i konveksna zrcala mogu dati slike realnih i virtualnih predmeta, koje su realne ili virtualne, uspravne ili obrnute, povećane ili umanjene.

Sl. 16. Konstrukcija slike koju daje sferno zrcalo uz Gaussove aproksimacije i uz svojstva kardinalnih točaka, centra C i fokusa F. a za konkavno zrcalo, b za konveksno zrcalo

Aberacije sfernog zrcala. Slike koje daju bilo kakav optički sistem izvan uvjeta stroge stigmatičnosti nisu savršene. One pokazuju aberacije (pogreške, odstupanja). U slučaju sfernog zrcala aberacije su uzrokovane samo (savršenim) sferičnim oblikom zrcala. Pri strogoj stigmatičnosti sve zrake koje izlaze iz točkastog predmeta sijeku se samo u jednoj točki, slici tog predmeta. Izvan uvjeta stroge stigmatičnosti sferno zrcalo je astigmatično. Tada se zrake koje su izašle iz točkastog izvora nakon refleksije ne sijeku u jednoj točki, već tvore *kaustičnu plohu* sa dva plašta (sl. 17). Posljedica je toga da se upadni, konični snop zraka malog otvora ne reflektira opet u konični snop, već prolazi dvjema malim, međusobno normalnim dužinama (*fokalama*), normalnim na srednju zraku (sl. 18) (v. *Fotografija*, TE 5, str. 538). Fokale su dijelovi plašteva kaustične plohe.

Sl. 17. Nastajanje kaustične plohe pri refleksiji na konkavnom sfernom zrcalu. a reflektirane zrake su grupirane uzduž jedne paralele zrcala, b reflektirane zrake su grupirane uzduž jednog meridijana zrcala

Sl. 18. Fokale F_1A_1 i F_2A_2 uzrokovane astigmatičnošću sfernog zrcala

Primjene sfernih zrcala. Konkavna zrcala upotrebljavaju se često u aparatima za projekciju. Žarna nit žarulje stavljena je približno u ravninu normalnu na glavnu os zrcala, kroz centar zrcala. Zrcalo daje od užarene niti nešto translatiranu sliku u istoj ravnini. Time se korisni fluks svjetlosti znatno povećava. Mala sferna zrcala služe kao svjetlosne kazaljke. Zbog nepostojanja kromatičnih aberacija sferna zrcala upotrebljavala su se za male astronomske teleskope (I. Newton) (sl. 19). Za svoj fokus sferno zrcalo nije strogo stigmatično, pa nije pogodno za velike astronomske reflektorske teleskope. Konkavna sferna zrcala upotrebljavaju se i za reflektore na automobilima. Konveksna sferna zrcala služe za promatranje prostora, npr. iza automobilskog vozila, jer imaju veće vidno polje od ravnih zrcala.

Sl. 19. Jednostavni reflektorski teleskop

Paraboloidna zrcala. Površina stigmatična refleksijom za par konjugiranih točaka, od kojih je jedna u konačnoj daljini od zrcala, a druga u beskonačnosti, jest rotacijski paraboloid oko osi *II'*, kojemu je jedna od tih točaka fokus. Ako je fokus realan, zrcalo je konkavno (sl. 20a), a ako je fokus virtualan, zrcalo je konveksno (sl. 20b). Paraboloidna zrcala služe za do-

Sl. 20. Reflektiranje zraka svjetlosti na konkavnom (a) i konveksnom paraboloidnom zrcalu (b)

bivanje gotovo paralelnih snopova svjetlosti i za reflektorske teleskope (v. Optički instrumenti).

Hiperboloidna zrcala. Stigmatična ploha za dvije konjugirane točke u konačnoj daljini, od kojih je jedna realna, a druga virtualna, jedan je od dvaju rotacijskih konfokalnih hiperboloida, koji djeluje bilo kao konkavno, bilo kao konveksno zrcalo. Konjugirane točke su fokusi tih hiperboloida (sl. 21).

Sl. 21. Refleksija zraka na hiperboloidnom zrcalu. a konkavno zrcalo daje od realnog predmeta I virtualnu sliku I'; b konveksno zrcalo daje od virtualnog predmeta I' realnu sliku I

Ravno zrcalo. Dvjema točkama I i I' pripada beskonačno mnogo konfokalnih hiperboloida, od kojih su dva degenerirala samo u jednu zrcalnu ravninu, prema kojoj su I i I' dvije konjugirane, međusobno simetrične točke. Tako je nastalo ravno zrcalo (sl. 22 a). No, svi konfokalni hiperboloidi, bez obzira na položaj svojih fokusa, degeneriraju u tu istu ravninu prema kojoj su njihovi fokusi simetrični. To znači da je ravno zrcalo stigmatično za bilo koji par točaka prostora, simetričnih s obzirom na ravninu zrcala. Predmet i slika uvijek su suprotne naravi, pa realnom predmetu odgovara virtualna slika i obratno (sl. 22 b i c). Ravno zrcalo je najjednostavniji i najsavršeniji strogo stigmatični sistem za sve točke prostora.

Sl. 22. Stvaranje slike ravnim zrcalom. a slika i predmet su potpuno simetrični prema ravnini zrcala, b ravno zrcalo od realnog predmeta I daje virtualnu sliku I'; c od virtualnog predmeta I daje realnu sliku I'

Ravno zrcalo omogućuje reflektiranje svjetlosti u bilo koji smjer poluprostora. Osobito je moguće zraku reflektirati iz bilo kojeg poluprostora u stalni smjer. To svojstvo ravnog zrcala primjenjuje se u *heliostatima*, koji zrake Sunca reflektiraju u konstantni smjer.

Translacijom ravnog zrcala paralelno s ravnim valom za udaljenost d slika se pomakne u istom smjeru za udaljenost 2d.

Zakrene li se ravno zrcalo za kut α oko osi koja leži u ravnini zrcala, reflektirana zraka zakrene se za kut 2α (sl. 23). Vrti li se zrcalo oko osi *O*-kutnom brzinom ω , reflektirana zraka u ravnini normalnoj na os vrtnje rotira kutnom brzinom 2ω . Reflektirane zrake koje tvore sliku virtualnog predmeta zakreću se prema navedenom pravilu. Pomak realne slike na nekom dovoljno udaljenom zastoru može biti znatan i za veoma male kutove zakretanja zrcala (Ch. Poggendorff).

Sl. 23. Zakretanjem ravnog zrcala za kut α oko osi O normalne na ravninu crtanja reflektirana zraka se zakrene za dvostruki kut ($x = 2\alpha$)

Sl. 24. Uzastopna refleksija na dva zrcala koja međusobno zatvaraju kut α . Reflektirana zraka je zakrenuta za dvostruki kut ($x = 2\alpha$)

Ako dva zrcala međusobno tvore kut α , zraka koja upada u ravnini normalnoj na oba zrcala reflektira se pod kutom $x = 2\alpha$ (sl. 24). Posebni slučajevi: $\alpha = \pi/4$, $x = \pi/2$; $\alpha = \pi/2$, $x = \pi$. Refleksija na dva zrcala primjenjuje se u uređaju nazvanom *sekstant*, koji služi, naročito pomorcima, za određivanje kuta između dva smjera.

Od realnog predmeta stavljenog između dva zrcala koja međusobno zatvaraju kut α zrcala daju neki broj slika koji ovisi o kutu α i o položaju predmeta. Ako zrcala međusobno zatvaraju kut $\alpha = \pi/n$, gdje je $n = 2, 4, 6, 8, \dots$ itd., dobiva se kaleidoskop. Predmet i njegove slike tvore figuru koja ima os simetrije reda n. Između predmeta i njegove slike u ravnom zrcalu postoji posebna vrsta simetrije, kao što postoji između lijeve i desne rukavice, lijeve i desne ruke itd. S obzirom na simetriju, takvi predmeti imaju kao element simetrije ravninu simetrije. Predmet i slika su u ravnom zrcalu enantiomorfni (v. Kristalografija, TE 7, str. 370). Dva međusobno enantiomorfna predmeta nikakvom operacijom, osim operacijom zrcaljenja, ne mogu koincidirati. Figure na sl. 25 imaju os simetrije osmog reda. One nemaju, svaka za sebe, ravninu simetrije, ali ih je moguće smjestiti tako da je jedna figura enantiomorfna s obzirom na drugu.

Dva međusobno normalna zrcala između kojih se nalazi neki predmet daju tri slike (sl. 26a), koje zajedno s predmetom tvore

Sl. 25. Enantiomorfne figure (u sredini trag ravnine simetrije)

Sl. 26. Stvarane slika pomoću međusobno normalnih ravnih zrcala. a dva zrcala daju tri slike koje zajedno s predmetom imaju os simetrije drugog reda (parcijalni je obrat slike u trećem kvadrantu); b potpuni obrat slike nastaje refleksijom na dva para međusobno normalnih zrcala ako su međusobno normalni i pravci presjeka OO'

figuru koja ima os simetrije drugog reda i dvije ravnine simetrije. Predmet u prvom kvadrantu i predmet u trećem kvadrantu nisu enantiomorfni, već imaju os simetrije drugog reda. Tada je lijeva strana jednog lika ekvivalentna desnoj strani drugog lika i obratno. Došlo je do jednostavnog obrata slike. Dva para međusobno normalnih zrcala s međusobno normalnim pravcima presjeka uzrokuju *potpuni obrat* slike (sl. 26b) (I. Porro), što se primjenjuje u mnogim optičkim uređajima (v. *Durbin*, TE 2, str. 487).

Dioptrijski sistemi

Općeniti oblik plohe dioptrijskog sistema stigmatičnog za par konjugiranih točaka. Najjednostavniji dioptrijski sistem sastoji se od dva prozirna, izotropna homogena optička sredstva, rastavljena nekom graničnom plohom, različitih indeksa refrakcije n_1 i n_2 . Sa 1 je označeno optičko sredstvo u kojemu se zrake svjetlosti šire prema graničnoj dioptrijskoj plohi i kroz nju prolaze u sredstvo 2.

Slično kao u katoptrijskim sistemima, pita se i ovdje koji oblik mora imati dioptrijska ploha da bude stigmatična za par konjugiranih točaka I i I' i za zadanu valnu duljinu svjetlosti. Uvjet stigmatičnosti sistema jest da se sve zrake jedne valne duljine, izašle iz izvora I, nakon refrakcije sastanu u realnoj ili virtualnoj točki I', tj. u slici točke I. Zbog Snelliusova zakona refrakcije (61) sve normale na dioptrijsku plohu moraju sjeći pravac kroz točke I i I'. Zato je dioptrijska ploha, stigmatična refrakcijom za par točaka, nužno rotacijski simetrična oko osi koja prolazi tim točkama, bez obzira na valnu duljinu. Može se pokazati da je meridijan takve plohe Descartesova ovala. Važni su samo ravni i sferni dioptar.

Ravni dioptar skup je dvaju optičkih sredstava različitih apsolutnih indeksa refrakcije rastavljenih ravnom dioptrijskom plohom. Ravni dioptar može se smatrati centriranim sistemom s beskonačno velikim radijusom zakrivljenosti, s osi rotacijske simetrije normalnom na bilo koju točku ravne granične plohe.

Ravni dioptar je strogo stigmatičan samo za ravne predmete u dioptrijskoj ravnini, što nije praktično, i za predmete u beskonačnosti.

Ravni dioptar približno je stigmatičan za svaku točku prostora iz koje na dioptrijsku plohu pada divergentni ili konvergentni snop zraka malog otvora, sa srednjom zrakom normalnom na dioptrijsku ravninu. Divergentni snop zraka izlazi iz realnog predmeta, a konvergentni se snop zraka sastaje u virtualnom predmetu. Ravni dioptar tada daje sliku prema Gaussovim aprok simacijama. Jednadžba konjugacije jest

$$x' = \frac{n_2}{n_1} x,$$
 (68)

gdje je x ordinata predmeta, a x' ordinata slike (sl. 27a). Ravni dioptar je približno stigmatičan i onda kada se upotrebljava uski snop zraka iz izvora *I*. Zato se vidi prihvatljiva, virtualna slika predmeta u vodi (sl. 27b).

Sl. 27. Ravni dioptar približno je stigmatičan: a uz Gaussove aproksimacije, b za snop zraka iz malog otvora

Planparalelna ploča je prozirno optičko sredstvo ograničeno dvjema ravnim, paralelnim dioptrijskim plohama.

Stigmatičnost planparalelne ploče je potpuno određena ako je poznata debljina d ploče i apsolutni indeksi refrakcije optičkih sredstava za određenu valnu duljinu svjetlosti.

Planparalelna ploča je strogo stigmatična samo za predmet u beskonačnosti, jer su tada upadne zrake međusobno paralelne, a prolazom kroz ploču ostaju paralelne međusobno i s upadnim zrakama. One se samo translatiraju. Pri normalnom upadanju nema translacije, a pri tangencijalnom upadanju translacija iznosi d. Slika realnog predmeta u beskonačnosti ili je realna u beskonačnosti u smjeru upadne svjetlosti ili je virtualna u beskonačnosti u smjeru suprotnom od smjera upadne svjetlosti (sl. 28 a).

Sl. 28. Stigmatičnost planparalelne ploče. *a* jedini slučaj potpune stigmatičnosti; *b* približna stigmatičnost uz Gaussove aproksimacije; *c* približna stigmatičnost za snop malog otvora Planparalelna ploča je približno stigmatična, uz Gaussove aprok simacije, ako na ploču upada snop svjetlosti malog otvora, a srednje su zrake normalne na ploču (sl. 28b). Tada vrijedi

$$\overline{II'} = d\left(1 - \frac{n_1}{n_2}\right). \tag{69}$$

Planparalelna ploča od realnog izvora daje virtualnu sliku, a od virtualnog izvora realnu sliku (sl. 28b). Virtualna slika realnog predmeta bliža je ploči nego predmet (sl. 29). Planparalelna se ploča čini tanjom nego što jest. Približna stigmatičnost postoji i onda kada se upotrebljava snop zraka malog otvora (sl. 28c).

Sl. 29. Virtualna slika realnog predmeta koju daje planparalelna ploča (debljine 30 mm) bliža je opažaču nego predmet, a slika predmeta koji se nalazi uz površinu ploče je u staklu

Prizma je optičko sredstvo ograničeno dvjema dioptrijskim ravnim plohama koje nisu međusobno paralelne (sl. 30a). Ravnina normalna na brid prizme siječe prizmu u glavnom presjeku.

Sl. 30. Prizma. a osnovni su podaci o prizmi: kut prizme α , indeks refrakcije n_1 sredstva u kojem se prizma nalazi i indeks refrakcije n_2 sredstva od kojeg je načinjena prizma; b hod zraka kroz glavni presjek prizme; c hod zraka kroz glavni presjek prizme za minimum devijacije δ upadnih zraka

Snelliusov zakon refrakcije za hod zraka u glavnom presjeku (sl. 30 b), uz pretpostavku monokromatske svjetlosti, ako je

 $n_{21} = n = \frac{n_2}{n_1} > 1$, daje sljedeće jednadžbe prizme:

$$\sin \varphi = n \sin \chi,$$

$$\sin \varphi' = n \sin \chi'.$$
(70)

$$\alpha = \chi + \chi', \tag{71}$$

$$\delta = \varphi + \varphi' - \alpha, \tag{71}$$

gdje je α kut prizme, a δ devijacija zrake koja je prošla kroz prizmu s obzirom na prvobitni smjer. Devijacija je monokromatskih zraka svjetlosti minimalna ako zraka izlazi iz prizme pod kutom pod kojim je u prizmu ušla. Tada je ravnina simetrije prizme i ravnina simetrije za hod zraka (sl. 30c), pa vrijedi

$$\varphi = \frac{\delta + \alpha}{2}; \quad \chi = \frac{\alpha}{2}; \quad n = \frac{\sin\frac{\delta_m + \alpha}{2}}{\sin\frac{\alpha}{2}}.$$
 (72)

To znači da se mjerenjem kuta α prizme i minimuma devijacije δ_m može odrediti relativni indeks refrakcije *n* prizme za valnu duljinu λ . Za mali je kut prizme α devijacija $\delta = (n-1)\alpha$ neovisna o kutu upadanja.

Indeks je refrakcije za promatranu materiju funkcija valne duljine i pokazuje disperziju. U instrumentalnoj optici staklo je gotovo jedino upotrebljavani materijal. Još uvijek se najčešće upotrebljavaju dvije grupe optičkih stakala, tzv. krunsko staklo (engl. crown glass) i tzv. flintsko staklo (engl. flint glass). Krunsko staklo je kalcij-kalij-silikatno staklo, a flintsko staklo je kalijolovo-silikatno staklo (tzv. kristalno staklo). Krivulje disperzije za navedene vrste stakala prikazane su na sl. 31.

frakcije s valnom duljinom) za krunsko i flintsko staklo

Disperziju optičkih stakala karakterizira moć disperzije

$$k = \frac{n_{\rm F} - n_{\rm C}}{n_{\rm D} - 1} \tag{73}$$

i njena recipročna vrijednost v = 1/k koja se zove Abbeov broj, gdje su $n_{\rm F}$, $n_{\rm C}$ i $n_{\rm D}$ indeksi refrakcije crvene vodikove $C \equiv H_{\alpha}$ linije ($\lambda \approx 656$ nm), plavozelene vodikove $F \equiv H_{\beta}$ linije ($\lambda \approx 486$ nm) i natrijeve linije D ($\lambda \approx 589$ nm). Za krunsko staklo k iznosi 0,02...0,015, a za flintsko staklo 0,03...0,02. Moderna instrumentalna optika treba stakla različitih svojstava, npr. velikog indeksa refrakcije, a male moći disperzije, što se postiže staklima veoma različitih kemijskih sastava.

Prizma je strogo stigmatična za realni predmet u beskonačnosti pri određenoj valnoj duljini. Slika je realna u beskonačnosti u smjeru otklonjenih realnih zraka; ona je virtualna u beskonačnosti u suprotnom smjeru. Od virtualnog predmeta u beskonačnosti prizma daje realnu ili virtualnu sliku u beskonačnosti (sl. 32 a).

Prizma nije centrirani optički sistem, što otežava kvantitativnu obradbu traženja njene približne stigmatičnosti.

Ona daje prihvatljive slike ako na prizmu pada divergentni ili konvergentni snop malog otvora, ako snop upada blizu brida

Sl. 32. Stvaranje slike pomoću prizme (monokromatska svjetlost). a od realnog predmeta u beskonačnosti prizma daje virtualnu sliku u suprotnom smjeru i realnu sliku u otklonjenom smjeru; b od divergentnog snopa, uz ograničenje snopa, prizma daje upotrebljivu sliku prizme, ako se srednja zraka snopa nalazi u glavnom presjeku prizme i ako je srednja zraka snopa u minimumu devijacije. Tada je slika udaljena od brida prizme koliko i predmet. Realnom predmetu odgovara virtualna slika na srednjoj zraci snopa, otklonjenoj prema bridu prizme (sl. 32b).

Princip spektrografa s prizmom. Za analizu vidljivog zračenja prizma je staklena, za ultravioletno zračenje do ~200 nm ona je kvarcna, a za infracrveno zračenje ona je, ovisno o području duljina vala, od natrij-klorida, kalij-bromida ili kalcijfluorida.

Realni izvor kojemu se analizira zračenje ozračuje ulaznu pravokutnu dijafragmu, tzv. pukotinu. Njene dimenzije su gotovo uvijek kontinuirano promjenljive, a reda su veličine: visina 10 mm, širina 10^{-2} mm . Kroz pukotinu zračenje pada na prizmu. Pukotina time postaje predmet od kojeg prizma i optički sistem iza nje daju slike. Ako je izvor zračenja termički, u vidljivom području nastaje kontinuirani spektar, u kojemu je najmanje otklonjeno crveno zračenje, a najjače otklonjeno ljubičasto zračenje. Tada je niz boja svjetlosti: crvena, narančasta, žuta, zelena, modra, ljubičasta (sl. 33). Slike pukotine nalaze se u fokalnoj plohi uređaja (v. *Fotometrija*, TE 5, str. 622, sl. 42).

Sl. 33. Prizma kao disperzijski uređaj

Sferni dioptar je skup dvaju homogenih izotropnih optičkih sredstava različitih apsolutnih indeksa refrakcije n_1 i n_2 , za određenu valnu duljinu λ , rastavljenih sferičnom plohom. Osnovni podaci o sfernom dioptru jesu: centar C, tjeme T, radijus $\varrho = \overline{CT}$ (algebarska veličina, pozitivna u smjeru širenja upadne svjetlosti), radijus otvora r i glavna os kroz točke C i T kojoj je pozitivni smjer u smjeru upadne svjetlosti (sl. 34). Ako se

Sl. 34. Konstruiranje zraka pri prolazu kroz sferni dioptar

odabere centar sfernog dioptra kao ishodište apscise z predmeta i apscise z' slike, može se pokazati da je sferni dioptar strogo stigmatičan za svaku točku svoje površine, pri čemu linearno povećanje $\gamma = +1$ ima teorijsko značenje. Stroga stigmatičnost postoji kad je predmet u centru (z = 0, z' = 0), te za tzv. Weierstrassove točke W_1 i W_2 , za koje vrijedi

$$z_{W1} = -\varrho \frac{n_2}{n_1}; \qquad z'_{W2} = -\varrho \frac{n_1}{n_2}.$$
 (74)

Te konjugirane točke leže na glavnoj osi s iste strane s obzirom na centar C, jedna točka je unutar sfere, a druga je izvan

sfere dioptra (sl. 35). One su važne u konstrukciji kondenzora i imerzijskih objektiva mikroskopa.

Sferni dioptar je približno stigmatičan za predmete blizu centra. Slika je virtualna ako je predmet realan i obratno. Linearno je povećanje $\gamma = n_1/n_2$. Nadalje, on je približno stigmatičan za paraksijalne zrake (Gaussove aproksimacije). Sferni dioptar ima dva fokusa, fokus slike F' i fokus predmeta F. Ako se stavi ishodište apscisa u tjeme T sfernog dioptra, tada jednadžba konjugacije pri Gaussovim aproksimacijama glasi:

$$-\frac{n_1}{x} + \frac{n_2}{x'} = \frac{n_2 - n_1}{R},$$
(75)

gdje su x, odnosno x' (algebarske) ordinate predmeta, odnosno slike, a $R = \overline{TC}$ (algebarska veličina) radijus sfernog dioptra. Pozitivni smjer osi x je smjer širenja upadne svjetlosti.

Sl. 35. Weierstrassove točke W_1 i W_2 sfernog dioptra

divergentan ako su mu fokusi virtualni, a konvergentan ako su mu fokusi realni.

Centrirani sistem, kao i ravni dioptar, sferni dioptar, odnosno sferno zrcalo, ima plohe za koje je linearno povećanje slike $\gamma = +1$. Općenito u centriranom sistemu nema takve fizičke plohe, no postoje dvije konjugirane ravnine koje imaju svojstvo da od predmeta u jednoj od tih ravnina postoji, pri Gaussovim aproksimacijama, slika u drugoj ravnini, s linearnim povećanjem $\gamma = +1$. Takve dvije konjugirane ravnine centriranog sistema jesu njegove glavne ravnine P i P' (v. Fotografija, TE 5, str. 538). U glavnoj ravnini slike P' sijeku se pravci nosioci zraka koje upadaju paralelno s osi centriranog sistema s produženjima pravaca nosilaca pripadnih zraka koje izlaze iz sistema kroz fokus slike (sl. 37a). U glavnoj ravnini predmeta

Sl. 37. Centrirani sistem i njegove glavne ravnine P i P'. a ulazni snop paralelan s osi nakon izlaska prolazi kroz fokus slike F'; b snop koji prije ulaska prolazi kroz fokus predmeta F izlazi iz sistema paralelno s osi

sijeku se pravci nosioci upadnih zraka koje prolaze fokusom predmeta s pravcima nosiocima zraka koje izlaze iz sistema paralelno s osi sistema (sl. 37b). Odabiru se dva ishodišta, glavne točke H i H' u kojima glavna os sistema probada glavne ravnine. Nodalne (čvorne) točke centriranog sistema dvije su točke na osi sistema koje imaju svojstvo da sistem od upadne zrake kroz jednu nodalnu točku daje s upadnom zrakom paralelnu izlaznu zraku kroz drugu nodalnu točku. Posebno i

Sl. 36. Konstrukcija slike pomoću kardinalnih točaka sfernog dioptra

Fokalna je daljina slike

$$f' \equiv \overline{TF'} = R \frac{n_2}{n_2 - n_1},\tag{76}$$

a fokalna daljina predmeta

$$f = -R \frac{n_1}{n_2 - n_1}.$$
 (77)

Moguće su četiri kombinacije sfernih dioptara s obzirom na apsolutne indekse refrakcije, konkavnost ili konveksnost sferne plohe prema upadnoj svjetlosti. Kardinalne točke sfernog dioptra jesu C, F, F'. Pomoću kardinalnih točaka može se konstruirati slika za paraksijalne zrake (sl. 36). Linearno je povećanje

$$\gamma = \frac{n_1 x'}{n_2 x}.\tag{78}$$

Centrirani sferni dioptri. Centrirani sistem je skup sfernih homogenih izotropnih dioptara sa centrima na istom pravcu koji je os rotacijske simetrije sistema. Svaki presjek centriranog sistema koji sadrži os rotacijske simetrije jest glavni presjek sistema. Upadna zraka u glavnom presjeku ostaje u njemu i nakon refrakcije na pojedinim dioptrijskim plohama.

Svaki centrirani sistem ima fokus slike i fokus predmeta. Svaki pojedini sferni dioptar daje od točkastog predmeta na glavnoj osi sliku tog predmeta na toj osi. Svaki centrirani sistem ima, stoga, na glavnoj osi fokus slike F' i fokus predmeta F. Fokusi mogu biti realni ili virtualni. Centrirani je optički sistem veoma često krajnja su dioptrijska sredstva sistema jednaka (npr. zrak), pa se nodalne točke podudaraju s glavnim točkama sistema. Glavne točke, fokusi i nodalne točke kardinalne su točke centriranog sistema. Centrirani je sistem potpuno određen ako su poznate apscise centara $C_1, C_2, \dots C_n$ i radijusi $R_1, R_2, \dots R_n$ dioptrijskih ploha te indeksi refrakcije $n_1, n_2, \dots n_n$ optičkih sredstava. Tada se položaji kardinalnih točaka sistema,

Sl. 38. Konstrukcija slike koju stvara centrirani sistem za različito ulazno i izlazno sredstvo

pri Gaussovim aproksimacijama, za određenu valnu duljinu mogu eksperimentalno odrediti, što omogućuje nalaženje položaja i linearnog povećanja slike bilo konstrukcijom (sl. 38), bilo jednadžbom konjugacije koja za jednaka krajnja sredstva glasi

$$-\frac{1}{x} + \frac{1}{x'} = \frac{1}{\varphi},$$
(79)

gdje je $\varphi = f'$, a x i x' su apscise predmeta, odnosno slike (sl. 39). Ako su krajnja sredstva jednaka, linearno je povećanje

$$\gamma = \frac{x'}{x}.$$
(80)

Smjer upadne svjetlosti je pozitivni smjer osi x.

Sl. 39. Iz geometrijskih odnosa pri konstrukciji slike koju stvara centrirani sistem slijedi jednadžba konjugacije

Jednostavne leće. Najjednostavniji centrirani sistem ima samo dvije sferne dioptrijske plohe, posebno ako je jedna od njih ravna, tj. beskonačno velikog radijusa zakrivljenosti. Centrirani sistemi sa dvije dioptrijske plohe jesu jednostavne leće. Moguće su ove kombinacije sfernih dioptara.

Leće tanka ruba: bikonveksna leća (sl. 40a); plankonveksna leća (sl. 40b); konkavnokonveksna leća tanka ruba (menisk tanka ruba, sl. 40 c).

Leće debela ruba: bikonkavna leća (sl. 40d); plankonkavna leća (sl. 40e); konkavnokonveksna leća debela ruba (menisk debela ruba, sl. 40f).

Sl. 40. Osnovni oblici leća. a bikonveksna leća, b plankonveksna leća, c konkavnokonveksna leća tankog ruba (tzv. menisk tankog ruba), d bikonkavna leća, e plankonkavna leća, f konkavnokonveksna leća debelog ruba (menisk debela ruba)

Upadna i izlazna zraka kroz Γ virtualno ili realno sijeku os leće u njenim nodalnim točkama v i v'. Za jednaka krajnja optička sredstva glavne se točke H i H' podudaraju s nodalnim točkama leće. Normalno na os leće prolaze glavne ravnine kroz glavne točke leće (sl. 41 b).

Jednostavne tanke leće. Leća kojoj je zanemariva međusobna udaljenost tjemena sfernih ploha prema radijusima zakrivljenosti tih ploha jest tanka leća. Ona je jednostavna ako je načinjena od samo jednog izotropnog i homogenog optičkog sredstva. Pretpostavlja se da tjemena tanke leće padaju u zajedničku točku u kojoj se nalazi optički centar, glavne točke i nodalne točke. Simbole tankih leća prikazuje sl. 42.

Jednadžba konjugacije tanke leće, uz poznati relativni indeks refrakcije $n_{21} > 1$, radijuse zakrivljenosti R_1 i R_2 njenih sfemih ploha te apscise x i x' predmeta, odnosno slike (algebarske veličine), jest, pri Gaussovim aproksimacijama:

Sl. 41. Prikaz osnovnih parametara debele leće. a optički centar Γ ; b glavne ravnine P i P', glavne točke H i H', nodalne točke v i v'

b

fokusi fokusi

Sl. 42. a simboli tankih leća s realnim i virtualnim fokusima, b konstrukcija slike $I'_1I'_2$ koju od realnog predmeta I_1I_2 stvara tanka negativna leća

$$-\frac{1}{x} + \frac{1}{x'} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right).$$
(81)

Fokalne daljine su međusobno jednake po iznosu, no protivnih su predznaka. Fokalna je daljina slike

$$\varphi = \left[(n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \right]^{-1}, \tag{82}$$

pa se jednadžba konjugacije tanke leće može pisati u obliku

$$-\frac{1}{x} + \frac{1}{x'} = \frac{1}{\varphi}.$$
 (83)

Radijusi zakrivljenosti mjere se od tjemena, odnosno optičkog centra leće i algebarske su veličine. Pozitivni smjer na osi apscisa smjer je širenja upadne svjetlosti. Linearno je povećanje algebarska veličina i iznosi

$$\gamma = \frac{x'}{x}.$$
 (84)

Već prema tome da li su fokusi leće realni ili virtualni, da li je predmet realan ili virtualan i kolika mu je apscisa, dobivaju se realne ili virtualne slike, koje mogu biti umanjene ili povećane, obrnute ili uspravne. Primjer konstrukcije slike pomoću kardinalnih točaka leće daje sl. 42b. Konvergencija ili jakost leće C po veličini i predznaku jednaka je recipročnoj vrijednosti fokalne daljine slike, pa je

$$C = \frac{1}{\varphi}.$$
 (85)

Jedinica konvergencije leće je recipročni metar. nekad zvan dioptrija. Za leće realnih fokusa C > 0, a za leće virtualnih fokusa C < 0. Slika je jednaka predmetu za $|x| = |x'| = 2\varphi$. Jednostavna leća može dati prihvatljive slike ako je njen dijametar oko deset puta manji od udaljenosti predmeta ili slike, već prema tome koja je od tih udaljenosti manja, a predmet je relativno blizu osi.

Centrirani sistem tankih leća. Tanke leće L_1 , L_2 razmaknute su na zajedničkoj glavnoj osi za d. Fokalne daljine su im φ_1 i φ_2 , a optički centri Γ_1 i Γ_2 . Tim je podacima sistem (dublet) određen. Položaj fokusa slike F' prema optičkom centru Γ_2 leće L_2 određen je relacijom

$$\overline{\Gamma_2 F'} = \frac{\varphi_2(\varphi_1 - d)}{\varphi_1 + \varphi_2 - d}.$$
(86)

Položaj fokusa predmeta F prema optičkom centru leće L_1 određen je relacijom

$$\overline{\Gamma_1 F} = -\frac{\varphi_1(\varphi_2 - d)}{\varphi_1 + \varphi_2 - d}.$$
(87)

Fokalna je daljina dubleta

$$\Phi = \frac{\varphi_1 \varphi_2}{\varphi_1 + \varphi_2 - d}.$$
(88)

Položaj glavne točke predmeta određen je relacijom

$$\overline{HF} = -\frac{\varphi_1 \varphi_2}{\varphi_1 + \varphi_2 - d}.$$
(89)

Konvergencija je dubleta

$$C = \frac{1}{\varphi_1} + \frac{1}{\varphi_2} - \frac{d}{\varphi_1 \varphi_2}.$$
 (90)

Sistem je *afokalan*, tj. $\Phi = \infty$, za $\varphi_1 + \varphi_2 = d$. Linearno povećanje afokalnog sistema je konstantno, neovisno o položaju predmeta i iznosi

$$\gamma = -\frac{\varphi_2}{\varphi_1}.\tag{91}$$

Sferne aberacije centriranih sistema. Snop zraka paralelnih s glavnom osi sfernog dioptra ne daje točkasti fokus, već tvori kaustičnu plohu sa dva plašta, slično kao sferna zrcala (v. *Fotografija*, TE 5, str. 538). Od uskog paralelnog snopa zraka koje tvore znatan kut s glavnom osi refraktirani snop pokazuje dvije fokale, a nije koničan. Centrirani sistemi sastavljeni od nekoliko sfernih dioptara moraju pokazivati sferne aberacije. Sl. 43 prikazuje fotografiju realne kaustične plohe leće, a sl. 44 fokale ekstraaksijalnog snopa.

Sl. 43. Fotografija glavne kaustične plohe konvergentne leće, nekorigirane za sferne aberacije. Monokromatska svjetlost dolazi s lijeve strane. (Fotografski pozitiv)

Sl. 44. Fotografija snopa što ga leća tvori od cilindričnog upadnog snopa koji s osi leće zatvara veliki kut. Nastale fokale (tangencijalna bliže leći, a sagitalna udaljenija od leće) načinjene su vidljivim raspršenjem svjetlosti na prozirnim zastorima. (Fotografski pozitiv)

Astigmatizam. Pretpostavka da se upotrebom paraksijalnih zraka (Gaussove aproksimacije) dobije ravna slika vrijedi samo za beskonačno mali predmet na osi centriranog sistema. Područje približno dobrih slika leži na konkavnoj paraboloidnoj plohi (astigmatizam). Zbog zakrivljenosti polja slike nije moguće dobiti u jednoj ravnini normalnoj na os sistema oštru sliku nekog ravnog predmeta, npr. dvaju dijametara normalnih međusobno i na os sistema (sl. 45). Sistem korigiran za astigmatizam zove se *aplanat*.

Sl. 45. Pri postojanju sfernih aberacija centriranog sistema polje slike je zakrivljeno, pa su na planarnim snimkama neoštri ili rubovi ili sredina

U načelu se sferne aberacije korigiraju tako da se optički sistem upotrebljava što bliže Gaussovim aproksimacijama. Tada je potrebno da svaki od sfernih dioptara jedne leće što bolje zadovoljava te aproksimacije. Konveksna leća najpovoljnijeg oblika ima radijuse $R_1 = -R_2/6$. Ta je leća po obliku slična plankonveksnoj leći kojoj se ravna ploha okrene prema bližoj od dviju konjugiranih točaka. Korigiranje sfernih aberacija postiže se i primjenom činjenice da longitudinalna sferna aberacija $\overline{F'_p}\overline{F'_m}$ (F'_p , F'_m su fokusi paraksijalnih, odnosno marginalnih zraka) može biti veća ili manja od nule, pa se kombinacijom negativne leće s pozitivnom, odabiranjem radijusa zakrivljenosti, debljine, indeksa refrakcije i međusobnog položaja leća može postići korigiranje sfernih aberacija.

Dijafragme (zasloni) mogu uzrokovati deformaciju slike, i to zbog jače refrakcije marginalnih nego paraksijalnih zraka (v. *Fotografija*, TE5, str. 539). Ako je dijafragma malog radijusa prema radijusu leće i prema linearnoj dimenziji predmeta smje-

668

štena ispred ili iza leće, pojavljuju se karateristične deformacije (sl. 46).

Zbog disperzije svakoj pojedinoj upadnoj valnoj duljini pripada posebna slika koju od predmeta stvara centrirani sistem. Slike istog točkastog predmeta na osi sistema koji emitira polikromatsku svjetlost ne leže, dakle, ni pri Gaussovim aproksimacijama u jednoj točki, pa se pojavljuje kromatična aberacija. Ili, sistem ima toliko fokusa slika koliko emitira valnih duljina. Za modru liniju F i za crvenu liniju C vodikova spektra vrijedi $n_{\rm C} < n_{\rm F}$, što znači da konvergencija leće raste kad se valna duljina smanjuje ($\varphi_{\rm F} < \varphi_{\rm C}$). Leća ima dva fokusa slike $F'_{\rm F}$ i $F'_{\rm C}$ i dva fokusa predmeta $F_{\rm F}$ i $F_{\rm C}$. Dužina $\overline{F'_{\rm C}F'_{\rm F}}$ predočuje, po veličini i predznaku, glavnu kromatičnu aberaciju. Za konvergentnu leću $\overline{F'_{\rm C}F'_{\rm F}} < 0$, a za divergentnu leću $\overline{F'_{\rm C}F'_{\rm F}} > 0$, što kombinacijom leća omogućuje korigiranje kromatične aberacije. Takav centrirani sistem zove se akromat.

Sl. 46. Deformacije monokromatične slike ovisne su o položaju dijafragme. a dijafragma je ispred leće, pa se od kvadratične mreže stvara slika deformirana u obliku bačvice; b dijafragma je u leći pa nema deformacije; c dijafragma je iza leće, pa se stvara slika deformirana u obliku jastučića (u tom eksperimentu nisu upotrijebljene stvarne dijafragme, ali su snopovi svjetlosti tako oblikovani kao da ih ograničuje dijafragma)

Fresnelove leće. Za rasvjetu, za signalne uređaje i napose za svjetionike čosto su potrebne veoma velike leće. Za takve leće treba velika masa stakla, koju je teško načiniti homogenom i u kojoj lako nastaju velika naprezanja, pa se leća može rasprsnuti već pri malim gradijentima temperature. Fresnel je predložio da se za svjetionike upotrijebi sistem sastavljen od jedne centralne plankonveksne leće i od koncentričnih, prstenastih prizmatičnih zona (sl. 47). Svaka zona ima isti fokus. Time su znatno korigirane sferne aberacije, a upotrijebljena je mnogo manja masa stakla. Danas se Fresnelove leće proizvode od sintetskih tvari za različite upotrebe. Imaju oblik plastične folije s utisnutim profilom zona.

Valna narav svjetlosti i geometrijska optika

Huygensov princip. Ch. Huygens prvi je uočio da je geometrijska optika nužna posljedica valne naravi svjetlosti. On je pretpostavio, bez obzira na mehanizam, da svaka točka prostora u koju stigne val svjetlosti, ili val neke druge naravi, postaje izvor novog sfernog vala kojemu je centar ta točka prostora (sl. 48 a). To je Huygensov princip. Za ilustraciju tog principa može poslužiti fotografija kružnog vala na vodi koji prolazeći pukotinom u stijeni opet daje kružni val (sl. 49). Na temelju tog principa mogu se izvesti osnovni zakoni geometrijske optike.

Sl. 48. Huygensov princip prema originalnom crtežu. a nastajanje kuglastih valova; b tumačenje refrakcije svjetlosti na granici dvaju sredstava (u sredstvu 2 svjetlost se širi manjom brzinom nego u sredstvu 1)

Sl. 49. Rupica u stijenci na koju upada kružni val na površini vode postaje izvor polukružnih valova (trenutna snimka)

Kao primjer neka posluži zakon refrakcije (sl. 48b). Primjenom Huygensova principa Snelliusov zakon (62) dobiva temeljno fizikalno značenje, naime, da je omjer apsolutnih indeksa refrakcije obrnuto proporcionalan faznim brzinama v_1 , v_2 u tim sredstvima:

$$\frac{n_2}{n_1} = n_{21} = \frac{v_1}{v_2}.$$
(92)

Ako se ne uzmu u obzir veoma slabe interakcije svjetlosti s materijom kao što su Ramanovo raspršenje, Brillouinovo raspršenje i dr., odnosno nelinearni efekti pri veoma jakim laserskim poljima, frekvencija monokromatske svjetlosti je neodjeljiva karakteristika fotona energije hv. Ona se, uz navedene iznimke, ne mijenja prolazom svjetlosti kroz materiju. Mijenjati se može, uz navedena ograničenja, samo valna duljina, pa vrijede odnosi:

$$v_1 = v \lambda_1$$
 $v_2 = v \lambda_2$,
 $\frac{\lambda_2}{\lambda_1} = \frac{v_2}{v_1}$ $\frac{R_2}{R_1} = \frac{n_1}{n_2}$. (93)

Optički put. Greben monokromatskog vala zračenja prijeđe u nekom optičkom sredstvu, u kojemu se širi faznom brzinom v prema relacijama (13) i (19), u intervalu vremena $t_2 - t_1$ geometrijski put

$$l = v(t_2 - t_1). (94a)$$

U istom intervalu vremena svjetlost bi u vakuumu, u kojemu se širi faznom brzinom c, prešla optički put

$$l_c = c(t_2 - t_1).$$
 (94b)

U optičkom putu ima isto toliko valnih duljina koliko ih ima u pripadnom geometrijskom putu. Zbog toga je pojam optičkog puta važan. Ako je val svjetlosti pošao od točke A do točke Bprostora kroz m optičkih sredstava, apsolutnih indeksa refrakcije $n_1, n_2 ... n_m$, tada je optički put od A do B

$$l_{c}(A,B) = \sum_{i=1}^{n} n_{i} l_{i}.$$
 (95)

Fermatov princip. Osnovni zakoni geometrijske optike mogu se izvesti polazeći od Fermatova principa. Ako stvarna zraka svjetlosti prolazi od točke A optičkim sredstvima, apsolutnih indeksa refrakcije $n_1, n_2...n_m$, i stiže u točku B, nakon bilo kojeg broja refrakcija i refleksija, Fermatov princip tvrdi da je varijacija tih optičkih kutova

$$\delta l_{c} = \sum_{1}^{m} l'_{i} n_{i} - \sum_{1}^{m} l_{i} n_{i}, \qquad (96)$$

beskonačna mala veličina drugog reda s obzirom na međusobnu udaljenost stvarnog optičkog puta l_c i njemu beskonačno blizog optičkog puta l'_c . Neka budu A, B i C tri reflektirajuće plohe (sl. 50), međusobno tangencijalne u točki U. Ploha B je dio konkavnog elipsoidnog zrcala s fokusima F i F'; ploha A ima u točki U manji radijus zakrivljenosti od plohe B; ploha C je ravnina tangencijalna u U na A i B. U toj točki sve tri plohe imaju zajedničku normalu n. To znači da je za svaku od tih ploha \overline{FU} upadna zraka, a $\overline{UF'}$ reflektirana zraka. Međutim,

Sl. 50. Fermatov princip. Optički je put od F do F' za plohu A stacionaran, za plohu B maksimum, za plohu C minimum

za reflektirajuću plohu A stvarni optički put, s obzirom na njoj blize putove, jest maksimum; za plohu B, dio elipsoidnog zrcala, on je stacionaran; za ravnu plohu C on je minimum.

Malusov teorem. Sistem zraka svjetlosti neka je takav da su u nekom sredstvu apsolutnog indeksa refrakcije pravci $\overline{A_1A}$,

 $B_1B, ..., M_1M, ...$ normale na neku plohu Σ_1 (sl. 51a). Nakon bilo kojeg broja refleksija i refrakcija, na bilo kakvim dioptrijskim plohama $S, S_1, S_2, ..., S'$, zrake prodiru u krajnje sredstvo indeksa refrakcije n_2 . Malusov teorem, izvedljiv iz Fermatova principa, tvrdi da su zrake $A'A_2, B'B_2, ..., M'M_2...$ normalne na jednu te istu plohu Σ_2 , za koju su optički putovi $l_c(A_1AA'A_2)$,

Sl. 51. Malusov teorem. a shema prolaza svjetlosti kroz kakve god dioptrijske sisteme za definiranje Malusova teorema, bsavršeno stigmatični sistem pretvara divergentni kuglasti val iz I u konvergentni kuglasti val u I'

 $l_c(B_1BB'B_2), ..., l_c(M_1MM'M_2)...$ međusobno jednaki. To znači također da iz točke I divergira sferni val koji nakon prolaza kroz stigmatični optički sistem konvergira u jednu točku I', koja je slika izvora I (sl. 51b). Kao primjer primjene Malusova teorema i Huygensova principa prikazana je na sl. 52 refleksija kuglastog vala koji izlazi iz fokusa sfernog zrcala i reflektira se kao ravni val. Konstruirani reflektirani val nije sasvim ravan, jer sferno zrcalo nije strogo stigmatično za svoj fokus.

Sl. 52. Primjena Huygensova principa i Malusova teorema. Planarni kružni val koji izlazi iz fokusa kružnog zrcala reflektira se tako da se pretvara u ravni val

Kontinuirano promjenljiv indeks refrakcije. Homogena optička sredstva su iznimke. Atmosfera, jezera, more itd. nisu optički homogeni. U njima postoje velike razlike u temperaturi, gustoći i kemijskom sastavu, što uzrokuje neprekinute promjene indeksa refrakcije. U takvu nehomogenom sredstvu svjetlost se ne širi u pravcima, nego po nekim zakrivljenim putanjama. Primjenom Malusova teorema može se naći radijus zakrivljenosti r snopa paralelnih zraka prema gradijentu indeksa refrakcije normalno na snop dn/dr, pa radijus zakrivljenosti iznosi

$$r = \frac{n}{\frac{\mathrm{d}\,n}{\mathrm{d}\,r}}.\tag{97}$$

Primjer konveksno zakrivljenog snopa u tekućini u kojoj indeks refrakcije opada s visinom, dn/dr < 0, prikazuje sl. 53. Zamjećuje se proširenje snopa zbog disperzije. Ona nastaje u atmosferi ako je, npr., temperatura zraka tik uz površinu mora

Sl. 53. Fotografija konveksno zakrivljenog snopa u tekućini kojoj indeks refrakcije kontinuirano opada s visinom. Ako bi se indeks refrakcije povećavao s visinom, snop bi bio zakrivljen konkavno. Zamjećuje se disperzija

niža (gustoća zraka veća) nego u nešto višim slojevima. Budući da promatrač zaključuje gdje je položaj svjetlosti samo po smjeru zraka koje ulaze u oko, smatrat će da je predmet negdje u smjeru tangente na snop koji ulazi u pupilu, tj. iznad stvarnog položaja. Slika je uspravna. Ta se pojava, u povoljnim uvjetima, zamjećuje u primorju: brod ili otočić čini se da lebdi iznad površine mora (v. Meteorologija, TE 8, str. 452). Konkavna zakrivljenost nastaje, među inim, za vrijeme vrućeg sunčanog dana iznad asfaltne ceste. Sloj zraka tik uz površinu ceste je tada topliji od zraka u nešto višim slojevima. Promatrač koji gleda cestu dovoljno daleko ispred sebe vidi sliku neba, odnosno okolice. Čini mu se da na cesti postoje lokve u kojima se nebo reflektira. Slika je zrcalno simetrična s predmetom, što doprinosi iluziji da se zrcaljenje zbiva na vodi. Titranje zvijezda uvjetovano je lokalnim fluktacijama gustoće zraka na putu zraka svjetlosti. Aksijalno simetrična i kontinuirana raspodjela indeksa refrakcije upotrebljava se u staklenim vlaknima, vodičima svjetlosti, u optičkim komunikacijama (sl. 10).

INTERFERENCIJA SVJETLOSTI

Interferencija dvaju međusobno idealno koherentnih valnih polja. U slobodnom, homogenom, izotropnom prostoru postoje dva izvora zračenja, 1 i 2, od kojih je svaki za sebe idealno koherentan. To znači: svaki izvor je matematička točka i emitira savršeno monokromatsko, dakle i monofrekventno zračenje, vremenske kutne frekvencije ω (7) i prostorne kutne frekvencije k (11). To je ekvivalentno tvrdnji da svaki izvor emitira savršeno sinusni, beskonačno dugi slijed kuglastih valova, za koje vrijedi relacija (25). Zbog jednostavnosti pretpostavlja se: a) Izvori I_1 i I_2 su sinhroni, tj. razlike u fazama su $\delta_2 - \delta_1 = \text{const.} = 0$, uz dodatno pojednostavnjenje $\delta_1 = \delta_2 = 0$. b) Ti su izvori jednakih intenziteta c) Točka M prostora u kojoj valovi iz I_1 i I_2 interferiraju udaljena je r_1 od I_1 i r_2 od I_2 . d) Kuglasti valovi iz I_1 , odnosno I_2 , određeni su relacijama:

$$E_1(r_1, t) = E_1 \frac{l_0}{r_1} \cos(\omega t - r_1), \qquad (98)$$

$$E_2(r_2,t) = E_2 \frac{l_0}{r_2} \cos(\omega t - r_2), \qquad (99)$$

gdje je l_0 jedinica duljine.

Perturbacije uzrokovane interferencijom tih dvaju koherentnih kuglastih valnih polja u točki $M(r_1, r_2)$ prostora očito ovise o amplitudama E_1 i E_2 i razlici faza $\varphi_2 - \varphi_1$, koja je u $M(r_1, r_2)$ neovisna o vremenu. Ona je

$$\delta = k(r_1 - r_2). \tag{100}$$

Iz geometrije je poznato da su plohe za koje vrijedi $\Delta r = r_1 - r_2 = \pm$ const. *konfokalni rotacijski hiperboloidi sa dva plašta*, kojima su fokusi točke I_1 i I_2 . Svakoj vrijednosti konstante pripada jedan plašt. Plaštevi $\Delta r = \pm$ const. zrcalno su asimetrični. Zbog (100) svaki od hiperboloida geometrijsko je mjesto konstantne razlike faza, pa su to *ekvifazne plohe*. Maksimalna interferencija pojavit će se tamo gdje je tzv. *razlika hoda* Δr za promatrani hiperboloid jednaka cijelom broju valnih duljina. Tada je, zbog (100), razlika faza jednaka cijelobrojnom

višekratniku od 2π . Minimum perturbacije interferentnog valnog polja pojavit će se u nekoj točki za koju je Δr jednak polovici valne duljine. Dakle, pojavljuje se maksimum efekta interferencije za

$$\Delta r = p_1 \lambda, \tag{101a}$$

minimum efekta interferencije za

$$\Delta r = (2p_1 + 1)\frac{\lambda}{2},$$
 (101b)

gdje je p_1 prirodni broj, tj. pozitivni ili negativni cijeli broj. Indeks 1 treba da podsjeti na to ograničenje. Općenito je broj

$$p = \frac{\Delta r}{\lambda} \tag{102}$$

red interferencije. To je cijeli broj samo kad je interferencijski efekt maksimalan. Razlika faza koja pripada redu interferencije p jest

$$\delta = 2\pi p. \tag{103}$$

Na sl. 54 prikazano je nekoliko hiperboloida konstantne razlike faza u kosoj projekciji. Redovi interferencije koji pripadaju tim plohama, naime, ...- $n, ..., -m-1, -m, ..., \pm 0, ..., m, m+1 ...$ n, n+1, n+2, ... (gdje je n > m+1), jesu mjesta maksimalnog efekta interferencije. Kad je $p_1 = \pm 0$, hiperboloidi degeneriraju u ravninu koja je ujedno ravnina zrcalne simetrije

Sl. 54. Konfokalni hiperboloidi stalne razlike faza, prikazani u kosoj projekciji, s fokusima I_1 i I_2 . Krivulje s parametrima *m* jesu hiperbole dobivene presijecanjem ravninom paralelnom s pravcem kroz fokuse, a koncentrične kružnice s parametrima *n* dobivene su presijecanjem ravninom normalnom na pravac kroz fokuse. Taj je prikaz dviju vrsta figura interferencije bitan za razumijevanje različitih interferencijskih uređaja (konstrukcija: E. Kranjčević, crtež: D. Rehorić)

interferencijskog uređaja i polja. Svaka ravnina paralelna s osi rotacijske simetrije kroz I_1 i I_2 siječe hiperboloide u porodici konfokalnih hiperbola, ..., -m-1, -m, ..., ± 0 , ..., m, m+1, ... zrcalno simetričnih s obzirom na ravninu $p_1 = \pm 0$. Ta ravnina siječe ravninu paralelnu sa I_1I_2 u pravcu $p_1 = \pm 0$, u kojoj su degenerirale hiperbole. Skup hiperbola tvori figuru interferencije koja se u optički interferencijskim eksperimentima može uhvatiti npr. na zastoru postavljenom paralelno s pravcem kroz izvore I_1 i I_2 . Pravac označen sa $p_1 = 0$ je centralna pruga interferencije. Drugi važan položaj promatranja figura interferencije jest u presjeku polja interferencije ravninom normalnom na pravcu kroz I_1 i I_2 . Tada su presjeci hiperboloida koncentrične kružnice, sa centrom u točki ravnine u kojoj ju probada pravac kroz I_1 i I_2 . Figure su interferencije koncentrični prstenovi koji su rotacijski simetrični oko tog pravca, kao što je to i čitavo polje interferencije.

Opisana i polukvantitativno obrađena pojava odnosi se na tzv. *blizo polje interferencije*, koje za optiku nema praktičnog značenja.

Za promatranje pojave interferencije važno je tzv. daleko polje interferencije. U tom polju konfokalni hiperboloidi (sl. 54) prelaze asimptotski u rotacijski simetrične konuse. Figure interferencije u ravnini normalnoj na pravac kroz I_1 i I_2 ostaju prstenovi, ali u dalekoj ravnini paralelnoj s pravcem kroz I_1 i I_2 figure su interferencije približno međusobno paralelni kružni lukovi. Ti se lukovi u dovoljno malom prostoru mogu aproksimirati paralelnim dužinama. Tada se figure interferencije sastoje od međusobno paralelnih pruga interferencije. Ako je d međusobni razmak izvora I_1 i I_2 , a r_0 srednja udaljenost tih izvora od točke $M(r_1, r_2)$ polja interferencije, granica između bliskog i dalekog polja interferencije određena je relacijom

$$r_0 > \frac{d^2}{\lambda}.$$
 (104)

Ako se uvrsti za d = 0.5 mm i $\lambda = 0.6 \text{ µm}$, dobiva se $r_0 = 41 \text{ cm}$. Obično se u optici promatraju figure interferencije u udaljenostima koje su oko 10 puta veće od te vrijednosti.

Figure interferencije u dalekom polju. U dalekom polju kuglasti valovi iz I_1 , I_2 mogu se u ograničenom prostoru smatrati ravnima. Tada su im valne plohe međusobno paralelne. Zasad nije potrebno uzeti u obzir polarizaciju valova, pa se oni mogu izraziti relacijama

$$E_{1}(x,t) = E_{1} \exp[i(\omega t - kx + \delta_{1})], \quad (105a)$$

$$E_{2}(x,t) = E_{2} \exp[i(\omega t - kx + \delta_{2})].$$
(105b)

Superpozicijom veličina $E_1(x,t)$ i $E_2(x,t)$ izračunava se amplituda E rezultantnog sinusnog vala, odnosno njen kvadrat E^2 , proporcionalan zbog (31) iradijanciji (51). Radi se, dakle, o tome da se zbroje funkcije (105a i b). Albegarskim postupkom, upotrebom kompleksnog oblika valne funkcije ili upotrebom Fresnelovih rotirajućih vektora, dobiva se isti rezultat:

$$E^2 = E_1^2 + E_2^2 + 2E_1 E_2 \cos \delta, \tag{106}$$

gdje je $\delta = \delta_2 - \delta_1$ razlika faze valova $E_2(x,t)$ i $E_1(x,t)$. Ako je $E_1 = E_2$, relacija (106) prelazi u

$$E^2 = 4E_1^2 \cos^2 \frac{\delta}{2}.$$
 (107)

Prikladno je uvesti *relativnu iradijanciju*, jednaku omjeru kvadrata rezultantne amplitude interferentnog polja i kvadrata amplitude, u istoj točki polja, jednoga od komponentnih valova. Za jednake amplitude (107) prelazi u

$$\frac{E^2}{E_1^2} = 4\cos^2\frac{\delta}{2}.$$
 (108)

Budući da se radi o dalekom polju interferencije, radijvektori r_1 i r_2 točke $M(r_1, r_2)$ od izvora I_1 i I_2 mogu se smatrati međusobno paralelnima, što je jednako tvrdnji da je točka M u beskonačnosti (sl. 55a). Maksimum iradijancije pojavit će se u smjerovima ϑ za koje je razlika hoda Δr valova iz I_1 i I_2 jednaka cijelom broju valnih duljina

$$\Delta r = d\sin\vartheta = p_1\lambda. \tag{109}$$

Minimumi će biti u smjerovima

$$\vartheta = \arcsin\frac{(2p_1+1)\lambda}{2d}.$$
 (110)

Pruge interferencije u dalekom polju jesu ekvidistantne, tj. stalnog razmaka

$$y_{p+1} - y_{p_1} = \lambda \frac{D}{d},$$
 (111)

gdje je $D \equiv r_0$ srednja udaljenost izvora od mjesta promatranja. Relacije (109), (110) i (111) vrijede, u idealiziranom polju interferencije koherentnih valova, za sve točke prostora, tj. za sve azimute i za sve kutove $\vartheta = 0 \cdots 2 \pi$. Na sl. 55b grafički je prikaz relativne iradijancije (108), ovisne bilo o ϑ , δ ili p, za pruge interferencije u dalekom polju. Na sl. 55c sličan je prikaz za prstenove interferencije u dalekom polju. Tada je os ordinata ujedno os rotacijske simetrije figure interferencije.

Sl. 55. Figure interferencije u dalekom polju. *a* geometrijska konstrukcija zraka koje će interferirati u dalekom polju; *b* grafički prikaz relativne radijancije pruga interferencije u dalekom polju kao funkcija od sin ϑ ili razlike faza δ ili reda interferencije *p* (pruge su ekvidistantne); *c* grafički prikaz relativne iradijancije prstenova interferencije u dalekom polju kao funkcija od sin ϑ ili δ ili *p* (red interferencije rate prema centru, prstenovi su sve bliži što su udaljeniji od centra)

Zamjetljivost figura interferencije V definirana je relacijom

$$V = \frac{E(\mathrm{ir})_{\max} - E(\mathrm{ir})_{\min}}{E(\mathrm{ir})_{\max} + E(\mathrm{ir})_{\min}},$$
(112)

gdje je $E(ir)_{max}$ maksimalna iradijancija pruge ili prstena interferencije, a $E(ir)_{min}$ minimalna iradijancija susjedne tamne pruge ili prstena interferencije. Zamjetljivost može poprimiti vrijednosti između 0 i 1. Zamjetljivost je važna za karakterizaciju figure interferencije i za zračenje koje tvori tu figuru.

Interferencija mnogostrukih valova savršeno koherentnog zračenja. Za spektrometriju i za prostorno usmjeravanje emisije

Sl. 56. Geometrijska konstrukcija mnogostrukih valova koji će interferirati u dalekom polju

radio-valova od velikog je interesa poznavanje svojstava figura interferencije kad umjesto dvaju koherentnih sinhronih izvora postoji niz od N takvih izvora, konstantnih razmaka d, jednakih intenziteta, poredanih na jednom pravcu (sl. 56). U točki M dalekog polja interferiraju ravni valovi jednakih amplituda E_1 . Između vala iz I_2 i vala iz I_1 postoji razlika hoda Δr ,

$$\Delta r = d\sin\vartheta. \tag{113a}$$

Između vala iz I_3 i vala iz I_1 razlika je hoda

$$2\,\Delta r = 2\,d\sin\vartheta. \tag{113b}$$

Između vala iz N-tog izvora i vala iz I_1 razlika je

$$(N-1)\Delta r = (N-1)d\sin \vartheta,$$
 (113c)

a pripadna je razlika faza

$$\varphi = \frac{2\pi}{\lambda} (N-1) d\sin \vartheta. \qquad (114)$$

Efekt interferencije u dalekoj točki polja rezultat je doprinosa valova iz svakog pojedinog izvora. Ako se primijeni princip superpozicije i kompleksni način pisanja valne funkcije, dobiva se za kompleksnu amplitudu (28) izraz

$$E_c = E_1 \{1 + \exp[i\delta] + \exp[i2\delta] + \dots + \exp[i(N-1)\delta]\},$$
(115a)

odnosno

$$E_{c} = E_{1} \frac{1 - \exp(iN\delta)}{1 - \exp(i\delta)}, \qquad (115b)$$

pa je relativna iradijancija

$$\frac{E^2}{E_1^2} = \frac{\sin^2\left(\pi N \frac{d}{\lambda} \sin \vartheta\right)}{\sin^2\left(\pi \frac{d}{\lambda} \sin \vartheta\right)}.$$
 (116)

Diskusija te relacije pokazuje sljedeće: *a*) glavni maksimumi relativne iradijancije pojavljuju se za razlike faza

$$b = p_1 2 \pi, \quad (p_1 = \dots -2, -1, 0, 1, 2, \dots),$$
 (117)

bez obzira na broj izvora koji sudjeluju pri interferenciji, napose i za dva izvora, b) relativna je iradijancija glavnih maksimuma N^2 , c) između dvaju susjednih glavnih maksimuma postoji N-2 sporednih maksimuma i N-1 minimuma s vrijednošću nula, d) kutna je širina sporednih maksimuma, izražena u radijanima, $2\pi/N$, e) kutna je širina glavnih maksimuma $4\pi/N$, f) približna je površina relativnog glavnog maksimuma $2\pi/N$, g) relativna iradijancija sporednih relativnih maksimuma naglo opada s jedne i s druge strane glavnih maksimuma. Na primjer, za N = 20 relativna je iradijancija glavnog maksimuma 400, prvoga sporednog maksimuma ~162, drugoga ~18, a devetoga ~1.1.

Općenito, s porastom broja izvora iradijancije sporednih maksimuma postaju potpuno zanemarljive prema iradijancijama glavnih maksimuma. Tada se uski maksimumi interferencije ističu na gotovo sasvim tamnoj pozadini. Međutim, ako se radi o stvarnim eksperimentalnim uređajima i izvorima zračenja, postoji mnogo faktora koji uzrokuju proširenje glavnih maksimuma. Jedan od tih faktora je nesavršena koherentnost zračenja.

Interferencija približno koherentnog zračenja. Interferencija nastupa i za zračenje koje nije idealno koherentno. Na zamjetljivost figura interferencije utječu dimenzije izvora i nesavršena monofrekventnost.

Utjecaj dimenzijâ izvora. Ako se promatraju pruge interferencije (sl. 54), figura se interferencije ne mijenja ako se umjesto niza točkastih izvora (sl. 56) upotrijebi niz beskonačno uskih i dugačkih paralelnih linearnih izvora. Praktički se to može približno ostvariti pomoću paralelnih, ekvidistantnih, uskih i dugačkih pukotina. Svaka takva pukotina emitira, prema Huygensovu principu, cilindrične valove koji su međusobno ko-

tovo točkastih izvora I_1 i I_2 , koji su zapravo veoma male rupice

Sl. 57. Geometrijska konstrukcija za ispitivanje lateralne koherentnosti valnog polja u okolini točke N prostora, pomoću zamjetljivosti pruga interferencije u dalekom polju oko točke M. Izvor I_0 je širok, radijusa y', a pruge nastaju interferencijom valova iz gotovo točkastih izvora I_1 i I_2 (rupice na zastoru Z_2 kroz točku N) sa svake strane točke N

sl. 49), stavljene simetrično sa svake strane točke N. Svaka točka P rasprostranjenog izvora I_0 , zbog različitih udaljenosti $P_i I_1 M$ i $P_i I_2 M$, daje svoj sistem pruga interferencije, neovisan o sistemima interferencija koje daju druge točke rasprostranjenog izvora. Da bi oko točke M nastale pruge interferencije prihvatljive zamjetljivosti, potrebno je da najveći pomak Δy maksimuma interferencije, s obzirom na srednji položaj maksimuma, bude manji od četvrtine razmaka $y_{p_{i+1}} - y_{p_i}$ dviju susjednih pruga, ili, prema (111), da bude

$$\Delta y < \frac{\lambda D}{4d}.$$
 (118)

Taj uvjet lateralne koherentnosti (ili geometrijske koherentnosti) valnog polja iz I_0 svodi se na ekvivalentne uvjete

$$\frac{2y'}{D'} < \frac{\lambda}{2d}, \qquad (119a)$$

odnosno

$$\alpha \, d < \frac{\lambda}{2}, \tag{119b}$$

gdje je 2y' maksimalni dijametar cirkularnog izvora ili širina linearnog dugačkog izvora.

Sl. 58 prikazuje utjecaj duljine d na zamjetljivost figura interferencije pri upotrebi parcijalno koherentnog zračenja. Međusobna koherentnost valova iz I_1 i I_2 smanjuje se kad se uspoređuju valovi u dvije, međusobno sve razmaknutije točke polja.

Sl. 58. Snimke pruga interferencije, eksperimentalno dobivenih prema sl. 57, uz djelomično koherentnu svjetlost. Slijeva nadesno su snimke uz povećani razmak d između točkastih izvora (usporedi sa sl. 62b)

Utjecaj nesavršene monofrekventnosti. Jedan je od razloga smanjenja zamjetljivosti figura interferencije da zračenje nije savršeno monofrekventno, odnosno monokromatsko. Uzrok tome je dvojak: konačna duljina emitiranog slijeda valova koje uzbuđeni atomi emitiraju pri prijelazu u stanje manje energije i Dopplerov efekt.

U klasičnoj slici emisije elektromagnetskog vala atom je gušeni oscilator koji emitira sinusni val kojemu amplituda opada. Atom je *dezekscitiran* u nekom vremenu Δt . Fourierova analiza te pojave pokazuje da vrijedi približna relacija

$$\Delta\omega\,\Delta t = 2\,\pi,\tag{120}$$

gdje je $\Delta \omega = \omega_2 - \omega_1$ tzv. širina vrpce emitiranog vala, dakle razlika kutnih frekvencija granica vrpce. Kratkom valnom slijedu, što znači slijedu koji traje kratko vrijeme, ili je kratke duljine koherentnosti $l_c = c \Delta t$ (što je ekvivalentno), pripada velika širina vrpce $\Delta \omega = 2 \pi \Delta v = 2 \pi / \Delta t$. Najpovoljnija monofrekventnost, odnosno mala širina vrpce, postiže se električnim izbojem u razrijeđenom plinu pri niskoj temperaturi. S padom tlaka i s padom temperature smanjuje se vjerojatnost sudara atoma. Naime, dva atoma mogu se sudariti dok je jedan od njih, ili oba, u procesu emisije. Time se emisija poremećuje, a širina se vrpce emitiranog vala povećava. Ako su atomi u emisiji podvrgnuti malim, nepravilnim smetnjama, koje uzrokuju mnogo slučajnih statističkih promjena u frekvenciji emitiranog vala, nastaje tzv. gaussovska valna grupa. Kad je smetnja veoma malena, profil je valnog slijeda, s veoma dobrom približnošću, sinusoida (sl. 59a), koja, međutim, ima početak i kraj. Pripadni spektar frekvencija prikazan je na sl. 59 a. S povećanjem smetnje valni slijed postaje sve kraći (sl. 59b), a pripadni spektar frekvencija sve širi (sl. 59b). Konačno, ako je emitiran samo jedan impuls (sl. 59c), spektar frekvencija zauzima široki interval (sl. 59c).

Sl. 59. Gaussovska valna grupa. *a* uz veoma malu smetnju, *b* uz povećanu smetnju, *c* uz emisiju samo jednog impulsa; *a'*, *b'* i *c'* grafički su prikazi širine pripadnih spektralnih linija ili vrpci ovisno o iznosu valnog vektora $k = 2 \pi / \lambda$

Računi pokazuju da spektralna linija žive ($\lambda \approx 253,7$ nm) povećava svoju širinu na polovici iradijancije za 0,012 nm kad se tlak argona u kojemu je uspostavljen živin luk poveća za 1013 kPa. Spektralne linije žive prikazane na sl. 60a odnose se na niskotlačni luk. Obje linije dubleta potpuno su rastavljene. Sl. 60b odnosi se na istovalno područje, ali na visokotlačni živin luk. Doima se kao da je emitirana jedna jedina široka vrpca. Što više, dublet se ne uzdiže iz tamne pozadine, već se proteže prema većim i manjim valnim duljinama u kontinuirani spektar, što ga u niskotlačnom luku uopće nema. U optičkoj praksi često se upotrebljava natrijev D-dublet kao približno monokromatska svjetlost. Računi daju $\Delta \omega \approx 3 \cdot 10^{12}$ Hz i $\Delta t \approx 2 \cdot 10^{-12}$ s, a duljina je koherentnosti $6 \cdot 10^{-4}$ m. U toj duljini ima ipak oko 1000 valnih duljina, što omogućuje upotrebu tog dubleta za, ne previše precizne, eksperimente s interferencijom.

Sl. 60. Dublet linija živina spektra. a visokotlačni luk, b niskotlačni luk

Uočivši utjecaj tlaka na proširenje spektralnih linija emitiranih u plinovima, nije neobično da termičko zračenje čvrstih tijela, u kojima su atomi međusobno čvrsto vezani, ima kontinuirani spektar frekvencija. Naprotiv, laserima se danas postižu veoma uske vrpce spektralnih linija i velike duljine koherentnosti (nekoliko metara).

Dopplerov efekt. Konačnost duljine valnog slijeda uzrok je samo neznatnog proširenja vrpce emitirane svjetlosti jednog atoma. Mnogo znatnije proširenje uzrokuje Dopplerov efekt. On nastaje zato što atom u procesu emisije nije na miru u laboratorijskom koordinatnom sustavu: zbog termičkog gibanja on se giba brzinom reda veličine 10^3 m/s u svim smjerovima prostora. Izvor se veže uz neki koordinatni sustav *S*, a opažač uz neki sustav *S'*. Sustavi se giblju jedan prema drugome relativnom brzinom \vec{u} . U nerelativističkom slučaju Dopplerova relacija daje

$$v' = v \left(1 \pm \frac{u}{c} \right), \tag{121}$$

gdje je c brzina svjetlosti u vakuumu. Pozitivan predznak dolazi u obzir ako se S i S' približuju, a negativan ako se oni međusobno udaljuju. Proširenje spektralne linije na polovici maksimalne iradijancije, uzrokovano Dopplerovim efektom atoma, od kojih bi se polovica gibala brzinom \vec{u} , a druga polovica brzinom $-\vec{u}$, bilo bi

$$\Delta \lambda_{1/2} = 2\lambda' \frac{u}{c}.$$
 (122)

Za vodikov spektar, pri temperaturi 293 K, proširenje $\Delta \lambda_{1,2}$ približno je 500 puta veće od proširenja linija spektra uzrokovanog smetnjama u emisiji atoma. Za kadmijevu je crvenu spektralnu liniju $\Delta \lambda_{1/2} \approx 0,00038$ nm pri 293 K.

Uređaji za dobivanje interferencija iz dva prirodna izvora zračenja

Nelokalizirane interferencije. U idealiziranom eksperimentu prikazanom na sl. 57 međusobno koherentni točkasti izvori I_1 i I_2 zamijenjeni su približno točkastim realnim izvorima obične svjetlosti. Ispred plamena svijeća može se staviti zastor sa dvije male rupice (sl. 61). Svjetlost iz tih gotovo točkastih izvorā I_1 i I_2 ne daje interferencije, u vremenu dugom prema vremenu dezekscitacije atoma (~10⁻⁸ s), jer su tako nastali

izvori međusobno potpuno *inkoherentni*. Srednja je vrijednost interferencijskog člana $E_1 E_2 \cos \delta$ u relaciji (106) tada jednaka nuli. Zato je iradijancija u nekoj dalekoj točki prostora proporcionalna sumi iradijancija koju bi u toj točki dao svaki izvor zasebno:

 $E^2 = E_1^2 + E_2^2. \tag{123}$

To je trivijalno zbrajanje iradijancija koje se susreće neprestano u svakidanjem životu. Da bi se dobile interferencije pomoću prirodnih izvora svjetlosti, potrebno je ostvariti dva međusobno ovisna izvora koji zadovoljavaju, svaki za sebe, uvjet geometrijske koherentnosti prema relacijama (119) i koji su međusobno koherentni.

Youngov uređaj. Najstariji i najjednostavniji eksperiment za dobivanje pruga interferencije izveo je Th. Young 1807. god. (sl. 57 i 62 a). Ispred primarnog izvora može se staviti interferencijski filtar koji propušta relativno usku vrpcu oko srednje valne duljine λ . Ako se kao primarni izvor upotrijebi laserski snop, npr. helijsko-neonskog lasera, zračenje mu je dovoljno velike duljine koherentnosti i lateralne koherentnosti da otpada zastor Z_1 . Rupice pri I_1 i I_2 osvijetle se neposrednim laserskim snopom. Tada je zamjetljivost pruga interferencije na zastoru Z_3 veoma velika. Sl. 62b fotografija je centralnog dijela figure interferencije, dobivena Youngovim uređajem u dalekom polju. Pruge interferencije mogu se opaziti u čitavom

Sl. 62. Youngove interferencije svjetlosti pomoću dviju pukotina. a shema Youngova uređaja: pukotine I_1 i I_2 su veoma blizu točke N, pa približna koherentnost polja u N vrijedi i za I_1 i I_2 . Zato je svjetlost iz tih pukotina gotovo koherentna: b fotografija (pozitiv) centralnog dijela monokromatske figure interferencije dobivene Youngovim uređajem u dalekom polju

području u kojemu se snopovi svjetlosti iz I_1 i I_2 miješaju (sjenčano područje na sl. 62a). Zato se kaže da Youngove interferencije nisu lokalizirane.

Fresnelova zrcala. Pomoću dvaju zrcala mogu se također dobiti nelokalizirane pruge interferencije (A. J. Fresnel, 1816). Bitni dijelovi uređaja (sl. 63) jesu realni izvor I_0 i dva ravna zrcala m_1 i m_2 koja međusobno zatvaraju mali kut γ . U svakom od zrcala dobiva se po jedna virtualna slika realnog izvora. Te virtualne slike djeluju kao dva međusobno (parcijalno) koherentna realna izvora. Dalja interpretacija svodi se na interpretaciju Youngova eksperimenta. Slično se nelokalizirane pruge interferencije mogu dobiti Fresnelovom biprizmom, a prstenovi Billetovom rastavljenom lećom i Pohlovom tankom planparalelnom pločicom.

Sl. 63. Shematski prikaz Fresnelova uređaja za interferenciju svjetlosti pomoću dvaju zrcala

Sl. 64. Shematski prikaz Lloydova uređaja za interferenciju svjetlosti pomoću jednog zrcala

Lloydovo zrcalo. H. Lloydovim uređajem interferencije dobivaju se parcijalno koherentni snopovi tako što se realni, sekundarni izvor I_0 (dijafragma ili pukotina) reflektira samo na jednom zrcalu (sl. 64). Polje interferencije nastaje miješanjem valova iz realnog izvora I_0 i valova iz njegove virtualne slike I'_0 . Eksperiment je veoma sličan Fresnelovu uređaju, no postoji bitna razlika. Ravnina zrcala nije ravnina simetrije uređaja: jedan od snopova dolazi neposredno od izvora, a drugi nakon

Sl. 65. Grafički prikaz relativne iradijancije Lloydovih pruga interferencije ovisno o razlici faza δ interferirajućih zraka

refleksije. Eksperimentalno se može pokazati da je pruga nultog reda Lloydove figure interferencije tamna. Tome je uzrok što se pri refleksiji pojavio skok u fazi reflektiranog snopa za π s obzirom na upadni snop. Za jednake amplitude u točki *M* interferencijskog polja relativna iradijancija je određena izrazom

$$\frac{E^2}{E_1^2} = 4\sin^2\frac{k\,\Delta r}{2},\tag{124}$$

gdje je Δr razlika hoda u točki M, a k valni broj. Grafički je ta funkcija prikazana na sl. 65.

Figure interferencije i interferometri

Figure interferencije lokalizirane u beskonačnosti (pruge jednakog nagiba). Iz točkastog parcijalnog izvora I_1 , koji je dio rasprostranjenog izvora (sl. 66a), približno monokromatski val V u sredstvu indeksa refrakcije n_1 pada na prvu plohu planparalelne ploče P. Na toj plohi val se djelomično reflektira u val V_1 , a djelomično se refraktira ulazom u ploču indeksa refrakcije n_2 . Na drugoj plohi djelomično se reflektira i nakon refleksije izlazi iz ploče kao val V_2 . Valne su plohe V_1 i V_2 međusobno paralelne, a fluksovi su im zračenja približno jednaki. Nastao je par, V_1 i V_2 , međusobno koherentnih harmonijskih valova koji prividno dolaze iz sinhronih beskonačno dalekih virtualnih izvora I'_1 i I''_1 interferiraju. To je prikazano idealizirano na sl. 54, ako se izvori I_1 i I_2 razmaknu beskonačno daleko. Razlika hoda između valova V_1 i V_2 jest

$$\Delta l = 2d \, n_2 \cos \chi \,, \tag{125a}$$

gdje je χ kut refrakcije. Budući da je val V_1 reflektiran na optički gušćem, a val V_2 na optički rjeđem sredstvu, to je totalna razlika faza između tih valova

Sl. 66. Haidingerove interferencije svjetlosti (nastajanje tzv. pruga jednakog nagiba). a shema uređaja za interferenciju reflektirane svjetlosti; b fotografija (pozitiv) figura interferencije jednakog nagiba Totalna razlika hoda izražena pomoću kuta refleksije ψ dobiva se iz relacije

$$(\Delta l)_{\rm tot} = \frac{\delta_{\rm tot}}{k} = 2d(n^2 - n_1^2 \sin^2 \psi)^{\frac{1}{2}} - \frac{\lambda}{2}$$
 (126)

Za $(\Delta l)_{tot} = p_1 \lambda$ (p_1 je prirodni broj) postojat će maksimumi iradijancije. Raspodjela relativne iradijancije za dva koherentna izvora približno je određena relacijom

$$\frac{E^2}{E_1^2} = 4\cos^2\frac{\delta_{\rm tot}}{2}.$$
 (127)

Budući da δ_{tot} , uz iste ostale uvjete, ovisi samo o kutu refleksije ψ , dobivena se figura interferencije (promatrana kroz konvergetni optički sistem ispred ploče kojemu je os okomita na ploču) sastoji od koncentričnih prstenova, od kojih svaki pripada jednom kutu refleksije, pa se govori o *figuri interferencije jednakog nagiba* ili *Haidingerovoj figuri interferencije* (sl. 66 b).

Sl. 67. Shema nastajanja pruga jednakog nagiba. *a* interferencija transmitirane i reflektirane svjetlosti; *b* interferencija transmitirane svjetlosti kroz planparalelnu ploču

Planparalelni sloj zraka između dvije debele, staklene, planparalelne ploče, razmaknute za d, uzrokuje totalnu razliku hoda reflektiranih valova (sl. 67 a)

$$(\Delta l)_{\rm tot} = 2 d \cos \psi - \frac{\lambda}{2}. \qquad (128a)$$

Figura interferencije u transmitiranoj svjetlosti (sl. 67b), nastala interferencijom valova V'_0 i V'_1 zbog razlike hoda

$$(\Delta l)_{\rm tot} = 2dn_2\cos\chi, \qquad (128b)$$

komplementarna je figuri interferencije u reflektiranoj svjetlosti. Zamjetljivost joj je veoma malena zbog razlike u fluksovima jednom transmitirane i dva puta reflektirane svjetlosti. Konvergentni je optički sistem stavljen iza ploče.

Figure interferencije u ravnini slike konvergentnog optičkog sistema (pruge jednake debljine). Ako se dvije ravne dioptrijske plohe sijeku pod kutom α , one tvore optički klin. On može biti vakuum (ili zrak), ili neka čvrsta ili tekuća prozirna tvar. Od interesa je slučaj kad je α veoma mali kut, a upadna je svjetlost gotovo normalna na klin. Dioptrijske su plohe u biti dva dioptrijska zrcala, m_1 , m_2 (sl. 68 a). Upadna zraka z re-

Sl. 68. Pruge interferencije jednake debljine. a shema nastajanja interferencija (ravnina xy može se smatrati ravninom lokalizacije ako se uzmu u obzir aproksimacije naznačene na slici); b grafički prikaz relativne iradijancije pruga jednake debljine (os x je brid klina zraka)

flektira se na m_1 , a zatim na m_2 . Ako se pretpostavi gotovo normalno upadanje i veoma mali kut α , reflektirane zrake z' i z'' sijeku se virtualno u nekoj ravnini između m_1 i m_2 . Ta je ravnina približno identična s jednom od ravnina zrcala, npr. m_2 . Zrake z' i z'', nastale refleksijom od iste zrake z, tvore međusobno koherentni par zraka koje interferiraju. One divergiraju iz ravnine lokalizacije iz koje izlaze. Ako se ta ravnina promatra pomoću nekog konvergentnog optičkog sistema (oko, lupa, mikroskop), u ravnini slike tog sistema zrake interferiraju, pa u njoj nastaje figura interferencije (A. H. Fizeau, 1862). Totalna je razlika hoda za vakuum, odnosno zrak

$$(\Delta l)_{\rm tot} = 2 d \cos \psi - \frac{\lambda}{2}, \qquad (129a)$$

pa se za $\varphi \approx 0$ dobiva

$$(\Delta l)_{\rm tot} \approx 2d - \frac{\lambda}{2}$$
. (129b)

Ako se između dioptrijskih ploha nalazi materija indeksa refrakcije n_2 , tada je

$$(\Delta l)_{\rm tot} \approx 2 d n_2 - \frac{\lambda}{2}.$$
 (129c)

Na mjestu udaljenom za y od brida Ox klina debljina je klina

$$d = \gamma \alpha, \tag{130}$$

pa je razlika faza $\varphi_2 - \varphi_1$ zraka z" i z', na tom mjestu

$$\varphi_2 - \varphi_1 = k \left(2 y \alpha - \frac{\lambda}{2} \right). \tag{131}$$

Raspodjela relativne iradijancije u ravnini slike optičkog sistema približno je određena relacijom (108).

Idealna figura interferencije klina sastoji se zato od pravocrtnih pruga jednake iradijancije, paralelnih s bridom Ox (sl. 68 b). U reflektiranoj svjetlosti brid je tamna pruga, jer je za $v = 0, \varphi_2 - \varphi_1 = \pi/2$.

 $y = 0, \varphi_2 - \varphi_1 = \pi/2.$ Pruge reda p_1 i $p_1 + 1$ pojavljuju se na mjestima na kojima je razlika debljina klina

$$d_{(p_1+1)} - d_{p_1} = \frac{\lambda}{2}, \qquad (132)$$

što znači da maksimum iradijancije jedne pruge slijedi stalnu debljinu klina. Topografska debljina klina je $\lambda/2$. Međusobni je razmak dviju susjednih pruga interferencije

$$y_{(p_1 + 1)} - y_{p_1} = \frac{\lambda}{2\alpha}.$$
 (133)

Ako kut α klina ostaje konstantan, a naglo se promijeni debljina d klina, pojavljuje se translacija sistema pruga, a da se pri tom njihov međusobni razmak ne mijenja. To svojstvo Fizeauo-

Sl. 69. Fotografija pruga interferencije (pozitiv) jednake debljine nastalih prolazom svjetlosti kroz tanku prozirnu pločicu nejednolike debljine vih pruga interferencije primjenjuje se pri proučavanju površina kristala (S. Tolansky). Slika 69 prikazuje pruge jednake debljine tanke prozirne pločice nejednake debljine.

Newtonovi prstenovi. Posebna varijanta figura interferencije približno jednake debljine jesu Newtonovi prstenovi. Interferencijski uređaj sastoji se od plankonveksne leće na ravnoj reflektirajućoj plohi (sl. 70 a). Ravnina lokalizacije može se smatrati da leži u toj plohi. Figura interferencije koju daje konvergetni optički sistem jesu prstenovi (sl. 71 a i b) kojima je relativna iradijancija približno određena relacijom (108), u kojoj je (sl. 70 b)

$$(\varphi_2 - \varphi_1)_{\text{tot}} = k \left(\Delta l\right)_{\text{tot}} = k \left(\frac{r^2}{R} - \frac{\lambda}{2}\right), \quad (134)$$

ako se radi o približno normalno reflektiranoj svjetlosti. U transmitiranoj svjetlosti otpada član $\lambda/2$.

Sl. 70. Newtonove interferencije svjetlosti. a interferencijski uređaj; b nastajanje razlike optičkog puta d

Sl. 71. Fotografije (pozitivi) Newtonovih prstenova interferencije. a u transmitiranoj, b u reflektiranoj svjetlosti

Interferencijski uređaji s rastavljenim snopovima

Michelsonov interferometar. Uređaj za dobivanje interferencija lokaliziranih u beskonačnosti, kao za planparalelnu ploču, ili lokaliziranih u jednoj ravnini, kao kad se radi o klinu, s potpuno rastavljenim, međusobno koherentnim snopovima načinio je A. A. Michelson. Iz izvora svjetlosti I_0 (sl. 72 a), koji je, prema potrebi, bilo rasprostranjen, bilo točkast u fokusu kolimatora, srednja zraka z snopa svjetlosti pada pod kutom $\pi/4$ na planparalelnu ploču P, kojoj se debljina zasad može

Sl. 72. Pojednostavnjeni shematski prikazi interferometara. a Michelsonov, b Machov interferometar

zanemariti. Na ploču je naparen tanki sloj metala, pa je ona polupropusna ($\rho \approx 0.5$). Polovica je upadnog fluksa svjetlosti reflektirana, a polovica je transmitirana ($\tau \approx 0.5$). Ploča takvih optičkih svojstava je razdvajač snopa. Razdvojene zrake 1 i 2 nastale iz upadne zrake z, međusobno su koherentne. Zraka 1, nastala transmisijom, pada na zrcalo m_1 , reflektira se u samu sebe, pada na razdvajač snopa i reflektira se u zraku 1'. Zraka 2 reflektira se na zrcalu m_2 u samu sebe, pada na razdvajač snopa koji ju djelomično transmitira kao zraku 2', paralelnu zraci 1'. Valovi 1' i 2' imaju približno jednake amplitude, međusobno su koherentni i interferiraju. Refleksija vala 1 i 1' zbiva se na vanjskoj plohi polumetalizirane ploče P, a refleksija zrake z u zraku 2 zbiva se na unutrašnjoj plohi te ploče. Pri tom nastaju skokovi u fazi reflektiranih valova. Zbog polumetalizacije oni nisu ni točno π , ni točno 0, već imaju samo približno te vrijednosti. Razlika hoda valova 1' i 2' lako se nađe ako se uoči da je put zrake 2' jednak putu koji bi ta zraka prešla da se reflektirala na zrcalu m'_2 , slici zrcala m_2 u razdvajaču snopa. To znači da je figura interferencije, dobivena pomoću konvergentnog sistema, ovisna o međusobnoj orijentaciji dvaju ravnih zrcala m_1 i m'_2 . Ta zrcala, već prema kutu koji zatvaraju, tvore interferencijski uređaj sličan klinu zraka ili planparalelnom sloju zraka između dviju ravnih dioptrijskih ploha. Dolazi li iz rasprostranjenog izvora I_0 približno monokromatska svjetlost, a ravnine su zrcala m_1 i m'_2 međusobno paralelne, u smjeru 1', 2' vide se u beskonačnosti prstenovi jednakog nagiba. Tvore li ravnine zrcala m_1 i m'_2 međusobno neki mali kut, a izvor I_0 je točkast, oko zamjećuje pruge jednake debljine, paralelne s pravcem u kojemu se sijeku ravnine zrcala m_1 i m'_2 . Taj pravac je brid nastalog zračnog klina. Budući da je m'_2 virtualna ravnina koja siječe m_1 , mogu se opažati pruge interferencije s obje strane brida na mjestu gdje se nalazi tamna pruga, bez obzira na valnu duljinu.

Zapravo je razdvajač snopa P debela planparalelna ploča, polumetalizirana na jednoj od ploha, na kojoj se reflektiraju zrake 1 i 2. No, zraka 2 mora proći tri puta kroz ploču P, dok zraka 1 prolazi tom pločom samo jedanput. Da bi se upostavila simetrija u apsorpciji u P i kompenzirala optička razlika hoda zbog prolaza kroz ploču, na put zrake 1 stavlja se nemetalizirana planparalelna ploča iste debljine i orijentacije kao što je razdvajač snopa P. Time se teorija interferometra svodi na beskonačno tanki razdvajač snopa. Važno svojstvo Michelsonova interferometra jest da su koherentni snopovi međusobno sasvim rastavljeni, pa se na put bilo kojeg od njih može staviti neki element koji mijenja optički put snopa.

Machov interferometar. U Michelsonovu interferometru oba odijeljena snopa, nakon što su napustila razdvajač snopova, opet se sastaju na istom razdvajaču. U Machovu interferometru snopovi odijeljeni na prvom razdvajaču D_1 (sl. 72b) sastaju se na drugom razdvajaču D_2 potpuno odijeljenom od prvoga. Uređaj je složeniji od Michelsonova interferometra, ali mu je prednost u tome što su mu snopovi odvojeniji. To omogućuje važne primjene Machova interferometra.

Figure interferencije s bijelom termičkom svjetlošću. Pri upotrebi bijele termičke svjetlosti u nekom interferencijskom uređaju svaka valna duljina λ_i daje na promatranome mjestu polja interferencije svoju figuru interferencije. Ako je interferencija valova jednakih amplituda iz dva točkasta, međusobno koherentna izvora, kao što je to u Youngovu uređaju, relativna je iradijancija u točki M(0,0) tada

$$\frac{E^2}{E_{1i}^2} = \sum_{i=1}^{i=n} 4\cos^2 \pi p_i = f(y, \lambda_i).$$
(135)

Ako se radi o vidljivom spektru i o boji koja nastaje u točki M(0, y), ukupna je *iluminancija*

$$E_{v}^{2} = \sum_{i=1}^{n} K_{\lambda i}(\lambda) E_{1i}^{2}(\lambda) 4 \cos^{2} \pi p_{i}, \qquad (136a)$$

gdje je $K_{\lambda i}$ spektralna efikasnost oka, koja je maksimalna pri $\lambda \approx 550$ nm, a nula pri $\lambda \approx 400$ nm i $\lambda \approx 750$ nm. Centralna

pruga (p = 0) ima spektralni sastav izvora svjetlosti, pa je ona bijela. Za Lloydove interferencije ukupna je iluminancija

$$E_{v}^{2} = \sum_{i=1}^{i=n} K_{\lambda i}(\lambda) E_{1i}^{2}(\lambda) 4 \sin^{2} \pi p_{i}, \qquad (136b)$$

pa je centralna pruga tamna.

U figurama interferencije sa svijetlim centrom boje se nižu u skladu s Newtonovom ljestvicom boja sa svijetlim centrom. Ako je centar figure interferencije taman, boje se nižu u skladu s Newtonovom ljestvicom boja s tamnim centrom. Pri tom se govori o bojama prvog, drugog itd. reda, koje su u intervalu između poništavanja vala $\lambda \approx 550 \text{ nm}$ za koji je oko najosjetljivije. Ako je u niskim redovima interferencije (pi malen) poništena valna duljina od 550 nm, tada je boja u točki M(0, y)purpurna i male iradijancije. S malom promjenom u spektralnom sastavu u blizini te točke pojavljuje se ili modra ili crvena boja. Zato se boja nastala poništavanjem za oko najosjetljivije valne duljine naziva osjetljivom bojom. S porastom reda interferencije pojedini se sistemi figura interferencije preklapaju i dobiva se opet osjet bijele svjetlosti. No u toj svjetlosti postoji čitav niz valnih duljina koje su na promatranom mjestu polja interferencije poništene. Takva svjetlost zove se bijela svjetlost višeg reda. Analizirana spektrometrom ona pokazuje tzv. kanelirani spektar s tamnim prugama.

Boja tankih listića. Pod pojmom tanki listić razumijeva se veoma tanki sloj (srednje debljine $10\cdots 10^4$ nm) bilo plina između dviju prozirnih ploča, bilo tekuće ili čvrste tvari u obliku klina ili planparalelne ploče. Tanki listić obasjan bijelom, npr., Sunčevom svjetlošću daje interferencije lokalizirane u ravnini klina ili u beskonačnosti, već prema tome da li ima oblik klina ili planparalelne ploče. Budući da svaka valna duljina daje svoj sistem pruga interferencije, tanki listić promatran u reflektiranoj ili transmitiranoj svjetlosti čini se obojen. Red boje između poništavanja za oko najosjetljivije valne duljine ($\lambda \approx 550$ nm) slijedi Newtonovu ljestvicu s tamnim centrom za reflektiranu svjetlost ili sa svijetlim centrom za transmitiranu svjetlost. S porastom debljine listića boja postaje bijela višeg reda. Boje tankih listića u prirodi su česte, takve su, npr., boje ptičjih pera, gušterovih ljuštica itd.

Primjena interferencije

Bit primjene interferencije sadržan je u ovim Fizeauovim riječima: »... zraka svjetlosti sa svojim nizom ekstremno malih, no savršeno pravilnih ondulacija, može se smatrati nekom vrstom prirodnog mikrometra, najvećeg savršenstva i naročito prikladnog za određivanje veoma malih duljina, koje, inače, nikako ne bismo mogli mjeriti«. Postojanjem interferometara s rastavljenim snopovima, interferencijske metode mogu se upo-trijebiti i za mjerenje relativno velikih duljina. Primjenom interferencija mnogostrukih valova moguće je veoma točno odrediti valne duljine.

Kontrola kvalitete optičkih površina. Stavljanjem optički ravne staklene plohe na neku staklenu plohu kojoj se ispituje planarnost i osvjetljavanjem te kombinacije natrijevom D spektralnom linijom pojavljuju se lokalizirane pruge interferencije. One prikazuju topografiju nepravilnosti planarnosti. Između

dviju pruga razlika je debljine $\Delta d = \frac{\lambda}{2} \approx 0.3 \ \mu m.$

Mjerenje pomaka. Sistem pruga dobiva se interferencijom dvaju snopova, od kojih je jedan reflektiran na površini vezanoj uz sistem kojemu se određuje pomak, a drugi je reflektiran na nepomičnoj plohi. Pomak figure interferencije za čitav razmak dviju pruga ili dvaju prstenova odgovara mehaničkom namelu za λ Takuom ja metodam Eizacu mierio tamičku

pomaku za $\frac{\lambda}{2}$. Takvom je metodom Fizeau mjerio termičku

dilataciju kristala prema kristalografskom smjeru.

Ispitivanje površina kristala. Upotrebom interferencije mnogostrukih valova mogu se mjeriti neravnosti površine reda veličine 1 nm. Površina, npr. kristala, koja se ispituje i standardna ravna ili sferična ploha koja se na nju stavlja prekrivene su slojem metala ($\tau \approx 0,05$). U reflektiranoj monokromatskoj svjetlosti (živina zelena linija, $\lambda \approx 546,1$ nm) kombinacijom staklene sferne plohe i ravne površine tinjca (liskuna) dobivena je figura interferencije prikazana na sl. 73 (Newtonovi prstenovi). Diskontinuitet figure interferencije uzrokovan je naglom razlikom u debljini tinjca.

Sl. 73. Fotografija (pozitiv) Newtonovih prstenova interferencije mnogostrukih valova svjetlosti na kalanoj pločici tinjca ($\lambda = 564, 1$ nm). Skokovit pomak prstenova nastaje na mjestima stepenica na površini tinjca (pomak za cijeli razmak međuprstenova nastaje na stepenici visine jednake polovici valne duljine upotrijebljene svjetlosti)

Izražavanje metra valnim duljinama. Michelson i Benoît prvi su (1895) izrazili metar u valnim duljinama kadmijeve crvene spektralne linije, služeći se, u principu, Michelsonovim interferometrom. Pomoću interferencija jednakog nagiba mjeren je razmak, izražen u valnim duljinama, između dviju paralelnih zrcalnih ploha, masivnog, metalnog, posrednog etalona kojemu je razmak (ne veći od polovice duljine koherencije upotrijebljenog zračenja, dakle ~ 0.24 m) bio određen veoma točno s obzirom na parametar. Zrcala etalona tvore sa m'_2 zračni klin, dok je dodatno zrcalo točno paralelno sa m'_2 . Kad se pomiče m'_2 , uspostavi se optički kontakt u bijeloj paralelnoj svjetlosti najprije s jednim, pa onda s drugim zrcalom etalona. S rasprostranjenim izvorom kadmijeve svjetlosti broje se prstenovi jednakog nagiba koji izviru ili poniru između dva optička kontakta sa zrcalima etalona. Nađeno je da metar sadrži 1553163,5 valnih duljina kadmijeve crvene linije u zraku pri normalnom tlaku i pri temperaturi 288,15 K. Godine 1960. odlučeno je da se napusti prametar kao standard duljine, pa je metar do 1983. bio definiran pomoću Fabry-Pérotova etalona kao točno 1650763,73 valnih duljina (u vakuumu) zračenja koje nastaje prijelazom $2p_{10} \rightarrow 5d_5$ u kriptonu masenog broja 86.

Michelson-Morleyjev eksperiment. Giba li se sustav S' stalnom brzinom v uzduž osi x koordinatnog sustava S, a u trenutku t = 0 oba sustava koincidiraju, tada Galilejeve transformacije glase:

$$z' = x - vt, \quad y' = y, \quad z' = z, \quad t' = t.$$
 (137)

Ako se te transformacije uvode u Newtonove zakone mehanike, oni poprimaju u sustavu S' isti oblik kao u sustavu S. Zbog toga nije moguće pomoću mehaničkih eksperimenata utvrditi da li se sustav S' jednoliko giba s obzirom na sustav S. Kad je J. C. Maxwell formulirao jednadžbe elektrodinamike, pokazalo se da one nisu invarijantne s obzirom na Galilejeve transformacije. To bi značilo da bi u sustavu S' elektromagnetske pojave bile drugačije formulirane nego u nekom sustavu S koji apsolutno miruje. To bi se, npr., odnosilo na brzine svjetlosti mjerene u oba sustava. Naime, derivacijom relacije (137) po vremenu dobiva se

$$c' = c - v, \qquad (138)$$

gdje su c i c' brzine svjetlosti u sustavu S, odnosno S', a v je relativna brzina jednog sustava s obzirom na drugi. U prošlom se stoljeću smatralo da je svjetlost transverzalni val vibracije nekog hipotetičnog, sveprožimajućeg, elastičnog sredstva (Fresnel) nazvanog eter. Pretpostavljalo se da je eter izotropan s obzirom na brzinu širenja svjetlosti koja je u njemu $c \approx 3 \cdot 10^8$ m/s. Ako se mogu primijeniti Galilejeve transformacije (137) i (138), tada bi se mjerenjem brzine svjetlosti c' u sustavu S' mogla naći relativna brzina v sustava S' prema sustavu S, tj. brzina s obzirom na eter. Kao prikladan sustav koji se giba kroz nepomični eter može služiti Zemlja, koja obilazi Sunce orbitalnom brzinom $|\vec{v}| \approx 3 \cdot 10^4$ m/s. Usprkos maloj brzini prema brzini svjetlosti, u interferometru sa snopovima rastavljenim pod pravim kutom, kao što je Michelsonov interferometar, mogla bi postojati razlika hoda zbog različite orijentacije snopova prema horizontalnoj komponenti v orbitalne brzine. Ta bi se razlika hoda očitovala u pomaku figure interferencije. Takav eksperiment (1887) učinili su Michelson i Morley.

Sl. 74. Shema Michelson-Morleyeva eksperimenta

Na sl. 74 shematski je prikazan eksperiment kako bi ga vidio opažač na miru u eteru, odnosno u sustavu S. Aparat na tlu, u sustavu S', juri ispred opažača brzinom horizontalne komponente v brzine \vec{v} . Slika zrcala m_2 , u razdvajaču P snopa, tvori mali kut sa zrcalom m_1 , pa se u teleskopu T vide paralelne pruge, jednake debljine zračnog klina. Njihov položaj ovisi o razlici hoda zrakâ koje su bile razdvojene na razdvajaču snopa i koje se opet na njemu sastaju. Razliku hoda treba izračunati primjenom relacije (138) za opažača u sustavu S, za kojeg je brzina svjetlosti c izotropna. Zrcala m_1 i m_2 neka budu u jednakim udaljenostima od P, što ona u stvarnom pokusu približno i jesu. Da bi svjetlost stigla od P do m_1 i natrag na P, ako se pretpostavi da je komponenta v paralelna s tim putem, potrebno je, zbog translacije aparature i relacije (138), vrijeme

$$t_1 = \frac{1}{c - v} + \frac{1}{c + v}$$
(139)

što odgovara optičkom putu

$$l_{1}(\text{opt.}) = c t_{1} = l \left(\frac{c}{c-v} + \frac{c}{c+v} \right) = \frac{2l}{1 - \left(\frac{v}{c}\right)^{2}} \approx 2l \left[1 + \left(\frac{v}{c}\right)^{2} \right],$$
(140)

pri čemu se približna vrijednost odnosi na slučaj $v \ll c$. Za vrijeme τ , potrebno da svjetlost stigne od P do m_2 , čitava se aparatura translatirala u smjeru komponente v za τv . Refleksija na zrcalu m_2 zbila se kad je to zrcalo došlo u položaj (m_2) . Svjetlost je prošla put od P do (m_2) u vremenu određenom relacijom (Pitagorin teorem)

 $\tau^2 c^2 = l^2 + \tau^2 v^2,$

što daje

$$c = \frac{l}{c} \left[c - \left(\frac{v}{c} \right)^2 \right]^{-\frac{1}{2}}.$$
 (142)

(141)

Jednako vrijeme potrebno je da val od (m_2) stigne na (P). Ukupni je optički put tog vala zato

$$t_2 c = 2\tau c = 2l \left[1 - \left(\frac{v}{c}\right)^2 \right]^{-\frac{1}{2}} \approx 2l + l \left(\frac{v}{c}\right)^2.$$
 (143)

Optička razlika hoda $\Delta l(opt.)$ valova koji interferiraju u teleskopu je stoga $\Delta l(\text{opt.}) \approx l(v/c)^2$. Kad je v u smjeru $\pm \vec{v}$ orbitalne brzine Zemlje, tada je $\Delta l(opt.)$ maksimalno moguća optička razlika hoda. Ako se upotrijebe dodatna zrcala, postignuta je efektivna duljina krakova l = 30 m. Tada je maksimalna razlika hoda $\sim 3 \cdot 10^{-7} \text{ m}$. Pri $\lambda \approx 600 \text{ nm}$ ona je, izražena u dijelovima od λ , približno $5 \cdot 10^{-1} \lambda$, što je ujedno moguća relativna translacija figure interferencije izražena u međusobnom razmaku dviju susjednih pruga. Michelson i Morley smatrali su da bi mogli svojim uređajem mjeriti još razliku hoda od $4 \cdot 10^{-2} \lambda$, što bi zbog (143) odgovaralo detekciji relativne brzine Zemlje prema eteru od $\sim 0.3 v_{max}$. Međutim, nikakav pomak figure interferencije nije primijećen. Različita, veoma točna mjerenja tokom kasnijih godina i mjerenja u novije vrijeme pomoću dobivanja udara interferencijom laserskih snopova uvijek su potvrdila bit Michelsonova i Morleyjeva rezultata. Smatra se stoga eksperimentalno utvrđenom činjenicom da je brzina svjetlosti u vakuumu invarijantna veličina u svim inercijskim sustavima. Postulirajući brzinu svjetlosti kao invarijantnu veličinu, Einstein je (1905) postavio svoju specijalnu teoriju relativnosti, koja cjelovito obuhvaća pitanje fizičkih zakona o inercijskim sustavima. Osobito za relativne brzine v inercijskih sustava koje nisu zanemarljive prema brzini svjetlosti u vakuumu Galilejeve se transformacije (138) ne mogu primijeniti.

Fabry-Pérotov interferometar. To je, u biti, Haidingerov uređaj, sa strogo paralelnim zrcalnim plohama male transmitancije (Ch. Fabry, A. Pérot). Zrcala mogu omeđivati paralelni sloj zraka ili nekog čvrstog dioptrijskog sredstva, kao što je staklo (kojemu su, eventualno, dodani posebni sastojci) ili monokristal aluminij-oksida s dodacima i drugo. Figura interferencije promatra se teleskopom u transmitiranoj svjetlosti. Ona nastaje mnogostrukom interferencijom valova koji su pri svakoj refleksiji bili i parcijalno transmitirani (sl. 75 a). U fokalnoj ravnini teleskopa vidi se niz koncentričnih prstenova, od kojih svaki, za danu valnu duljinu, zadovoljava relaciju

$$p_1 \lambda = 2nd \cos \psi, \qquad (144)$$

gdje je p_1 red interferencije prstena (prirodni broj), *n* indeks refrakcije sredstva između zrcalnih ploha, ψ kut koji zatvaraju transmitirane zrake s normalom na izlaznu plohu, a *d* međusobni razmak zrcalnih ploha. Kut ψ redovno je malen. Prstenovi se pojavljuju pod istim kutovima kao kad interferiraju

Sl. 75. Fabry-Pérotov interferometar. a pojednostavnjena shema, b figura interferencije mnogostrukih valova u transmitiranoj svjetlosti

samo dva vala (sl. 67 b), no veoma su tanki (sl. 75 b) jer su nastali interferencijom mnogostrukih valova. Uređaj zato dobro razlučuje valne duljine, pa se upotrebljava osobito za proučavanje superfine strukture spektralnih linija.

Primjenom relacije (144) i upotrebom staklenih cilindara kojima je visina *d* bila određena pomoću prametra (Fabry-Pérotovi etaloni) međunarodno je definirana jedinica duljine kao valna duljina zračenja ⁸⁶Kr pri prijelazu $2p_{10} \rightarrow 5d_5$.

U najnovije vrijeme Fabry-Pérotov uređaj primjenjuje se u industrijskoj mjernoj tehnici kao bitni element stabilizatora valne duljine helijsko-neonskog lasera. Etalon je učinjen od posebnog stakla veoma malog koeficijenta dilatacije. Dimenzije mehaničkih dijelova točno se mjere interferometrijski pomoću tako stabilizirane valne duljine, a ne pomoću mehaničkih mikrometara.

U laserskoj tehnici (v. *Laser*, TE7, str. 465) paralelne Fabry--Pérotove reflektirajuće plohe ograničuju rezonantnu lasersku šupljinu, pa su one bitni elementi svakog lasera.

Antirefleksni sloj. Reflektancija neke zrcalne plohe, najčešće stakla, može se smanjiti tako da se površina prekrije prozirnim slojem takve debljine i indeksa refrakcije da se od upadnog zračenja poništava reflektancija za neku odabranu valnu duljinu (često $\lambda \approx 550$ nm). Antirefleksni sloj treba zadovoljiti relaciju za indeks refrakcije $n_a = n_s^{1/2}$, gdje se n_a odnosi na antirefleksni sloj, a n_s na staklo, i relaciju debljine sloja $n_a d = \lambda/4$. Obično se upotrebljava kao antirefleksni sloj magnezij-fluorid. Ako se želi poništiti refleksija zračenja valne duljine $\lambda \approx 550$ nm, za $n_a \approx 1,38$ i $n_s \approx 1,7$ (flintsko staklo), debljina iznosi $d \approx 107$ nm.

Dielektrična višeslojna zrcala. Veoma efikasni višeslojni reflektori (zrcala) mogu biti načinjeni od *i* uzastopnih slojeva indeksa refrakcije n_i , geometrijske debljine d_i i optičke debljine $n_i d_i = \lambda/4$. Ti su slojevi, izmjenično velikog i malog indeksa refrakcije, naneseni na staklo. Zbog skoka u fazi na svakoj drugoj graničnoj plohi reflektirani valovi se konstruktivno zbrajaju. Može se upotrijebiti i do 30 naparenih slojeva i postići reflektancije veće od 0,999. Moguće je, također, upotrijebiti samo nekoliko $\lambda/4$ slojeva da bi se dobila polupropusna zrcala, npr. za razdvajače snopova. Svojstvo je tih zrcala da slabo apsorbiraju upadnu svjetlost i da su trajna, pa se gotovo isključivo upotrebljavaju u interferometrima, laserima i drugim optičkim uređajima.

Interferencijski filtri. To su, zapravo, tanki Fabry-Pérotovi interferometri. Na tanku, planparalelnu dielektričnu pločicu naparena su sa svake strane dielektrična, djelomično transparentna zrcala. Na vanjsku stranu svakog od tih zrcala obično je deponiran antirefleksni sloj, relativno složene strukture, zbog skokova u fazi na zrcalima. Optička debljina dielektričnog sloja određena je relacijom (144) Fabry-Pérotova interferometra. Pri $\psi = 0$, filtar propušta simultano: za $p_1 = 1$, zračenje valne duljine λ , za $p_1 = 2$, $\lambda/2$; za $p_1 = 3$, $\lambda/3$, itd. Transmitancije dviju od tih valnih duljina mogu se potisnuti prikladnim obojenim filtrima. Postoji čitav niz interferencijskih filtara koji izdvajaju relativno uske vrpce valnih duljina iz vidljivog i susjednih područja (sl. 76). Ako kut upadanja na filtar nije jednak nuli, put svjetlosti u filtru se mijenja, što mijenja monokromatsku transmitanciju i širinu propuštene vrpce. To svojstvo

interferencijskog filtra i Fabry-Pérotova interferometra primjenjuje se ako se želi postići mala promjena duljine vala izlaznog snopa.

Mjerenje indeksa refrakcije plinova. Sloj plina, indeksa refrakcije n_1 , nalazi se između dviju točno paralelnih ploča, međusobno razmaknutih za *d*. Promatra se Haidingerova figura interferencije u transmitiranoj svjetlosti. Promijeni li se indeks refrakcije plina od n_1 na n_2 , optička se razlika hoda promijeni za

$$\Delta d(\text{opt.}) = 2d(n_2 - n_1).$$
 (145a)

Pri tom se jedan od prstenova interferencije pomakne ispred neke stalne oznake. Tada je promjena reda interferencije

$$\Delta p = (n_2 - n_1) \frac{2d}{\lambda}. \tag{145b}$$

Ako je između ploča najprije bio vakuum, tada je $n_1 = 1$, pa je

$$\Delta p = (n-1)\frac{2d}{\lambda}, \qquad (145c)$$

gdje je n apsolutni indeks refrakcije plina u promatranim prilikama. Veličina n-1 proporcionalna je gustoći plina ϱ .

Pruge jednake gustoće plina. Budući da vrijedi

$$n-1=G\varrho, \tag{146}$$

gdje je G neka konstanta za promatrani plin, sloj plina između dvije paralelne staklene ploče, obasjan približno monokromatskom svjetlošću pod kutom upadanja $\varphi = 0$, dat će u fokalnoj ravnini konvergentnog sistema figuru interferencije kojoj područja i pruge jednake iradijancije slijede jednaku gustoću plina.

Sl. 77. Fotografija (pozitiv) figure interferencije snimljena Machovim interferometrom. Interferencije su uzrokovane strujanjem zraka nadzvučnom brzinom koji udara u zapreku

To se svojstvo primjenjuje u aerodinamici. Na sl. 77 prikazana je figura interferencije dobivena pomoću Machova interferometra. Na jedan od odijeljenih koherentnih snopova paralelne svjetlosti stavljena je staklena ćelija u kojoj zrak struji nadzvučnom brzinom između dviju planparalelnih ploča i udara o zapreku.

DIFRAKCIJA SVJETLOSTI

F. M. Grimaldi je prvi opazio da se svjetlost kad nailazi na neku zapreku ne širi u pravcu u kojemu je tangirala tu zapreku, već malo mijenja svoj prvobitni smjer: ona se difraktira (ogiba). Umjesto točno definirane geometrijske sjene, koja bi nastala primjenom zakona geometrijske optike, svjetlost tvori složenu *figuru difrakcije*. Difrakcija se pojavljuje uvijek kad neki uređaj uzrokuje promjenu faze ili amplitude koja nije konstantna na čitavoj valnoj plohi, npr. kad se val ograniči. Ako je širina snopa veoma velika s obzirom na valnu duljinu, angularno širenje je maleno i valovi tvore grupu ravnih valova. Snop svjetlosti konačne širine ne može biti prikazan samo jednim ravnim valom, već se može smatrati sistemom ravnih valova koji se šire u različitim smjerovima. U svim optičkim uređajima upotrebljavaju se snopovi svjetlosti ograničeni dimenzijama optičkog sistema. To znači da je u takvim sistemima difrakcija uvijek prisutna. Zbog difrakcije ne postoji savršena stigmatičnost nekog sistema. Difrakcija neizbježno određuje granicu stigmatičnosti sistema koja se ne može prijeći. Međutim, ta se granica pojavljuje tek kad su sve druge aberacije sistema uklonjene. Ona tada konačno ograničuje točnost mjerenja prostornih koordinata.

Otkad je moguće upotrebljavati koherentno lasersko zračenje, lako je eksperimentalno pokazati različite figure difrakcije uzrokovane različitim zaprekama. Dapače, koherentna difraktirana svjetlost omogućila je eksperimentalno trodimenzionalno preslikavanje *holografijom* (v. *Holografija*, TE 6, str. 430). Teorijsko izračunavanje figura difrakcije može biti zamršeno, osim u veoma specijalnim slučajevima. Uvijek se upotrebljava Huygens-Fresnelov princip, što konačno dovodi do integrala koji obuhvaćaju interferenciju pojedinih elementarnih valova, uzimajući u obzir rubne uvjete određene zaprekom.

Difrakcija se najčešće luči na dva, veoma općenita slučaja: a) izvor koherentne svjetlosti i figura difrakcije nalaze se u beskonačnosti s obzirom na zapreku. Tada na zapreku pada ravni val, a figura je difrakcije u dalekom polju. Ti uvjeti definiraju tzv. Fraunhoferovu difrakciju; b1) točkasti (koherentni) izvor zračenja ili ravnina promatranja figure difrakcije jesu u blizom polju s obzirom na zapreku i b2) točkasti (koherentni) izvor zračenja i ravnina promatranja figure difrakcije su u blizom polju s obzirom na zapreku. Ti uvjeti definiraju tzv. Fresnelovu difrakciju.

Fraunhoferova je difrakcija važna za opću teoriju optičkih instrumenata, a Fresnelova difrakcija za holografiju. Između tih dviju klasifikacija difrakcije nema nikakve principijelne razlike. One postoje, za istu perturbaciju, u figurama difrakcije. Fraunhoferova je difrakcija granični slučaj Fresnelove difrakcije.

Fraunhoferova difrakcija

Difrakcija na uskoj pukotini. Otvor (apertura) u obliku uske pukotine, širine b i visine $a \ge b$, obasjan je ravnim (koherentnim) valom valne plohe Σ , paralelne s ravninom pukotine (sl. 78). Ovaj se slučaj može relativno lako teorijski obraditi,

Sl. 78. Shematski prikaz nastajanja Fraunhoferove difrakcije na pukotini $(a \gg b)$

što daje relaciju za relativnu iradijanciju figure difrakcije

$$E(\text{ir.})_{\text{rel}} = \frac{\sin^2\left(\frac{\pi b}{\lambda}\sin\vartheta\right)}{\left(\frac{\pi b}{\lambda}\sin\vartheta\right)^2}.$$
 (147)

Ta je funkcija grafički prikazana na sl. 79 a za

$$\beta = \frac{\pi b}{\lambda} \sin \vartheta. \tag{148}$$

Sl. 79. a iradijancija pruga Fraunhoferove difrakcije na dugačkoj, uskoj pukotini; b fotografija (pozitiv) monokromatske figure difrakcije

Na sl. 79 b prikazana je fotografija figure difrakcije na jednoj pukotini.

Minimumi s vrijednošću nula postoje za $\beta = m\pi$; m = ..., -2, -1, +1, +2, ...

Glavni maksimum je pri $\beta = 0$, odnosno $\vartheta = 0$. Sporedni maksimumi leže približno pri polovici kutnog intervala između maksimuma, tj. pri $\beta \approx \pm 3 \pi/2$, $\pm 5\pi/2$, $\pm (2m + 1)\pi/2$, za koji je sin $\beta_m = 1$. Približna relativna iradijancija iznosi

$$E(\text{ir.})_{\text{rel}} \approx \left[(2m+1)\frac{\pi}{2} \right]^{-2}.$$
 (149)

Širina centralnog maksimuma izražena u β jest 2π . Izražena pomoću kutova difrakcije ϑ_1 i ϑ_{-1} , pri kojima postoje bočni minimumi uz glavni maksimum, ona je

$$\vartheta_1 - \vartheta_{-1} = \arcsin\frac{\lambda}{b} - \arcsin\left(-\frac{\lambda}{b}\right) = 2\arcsin\frac{\lambda}{b}.$$
 (150)
Za male $\frac{\lambda}{b}$ vrijedi

$$\vartheta_1 - \vartheta_{-1} \approx 2\frac{\lambda}{b}. \tag{151}$$

Širina sporednih maksimuma izražena u β jest π , odnosno

$$\vartheta_{i+1} - \vartheta_i = \arcsin\frac{\lambda}{b}.$$
(152)

Ona je polovica širine glavnog maksimuma. Za male kutove difrakcije širina je sporednih maksimuma $\frac{\lambda}{h}$.

Klasična difrakcijska rešetka. Niz od N ekvidistantnih, koherentnih točkastih izvora daje, u dalekom polju, mehanizmom interferencije mnogostrukih valova figuru interferencije koja se sastoji od veoma uskih pruga znatne iradijancije, popraćenih sporednim maksimumima zanemarljive iradijancije. Relacija (116) može se primijeniti i na niz linearnih, međusobno paralelnih pukotina u jednoj ravnini na kojima se difraktira ravni upadni val. Takav sistem pukotina zove se klasična difrakcijska rešetka za transmitirano zračenje (sl. 80) (D. Rittenhouse, 1776; J. J. Fraunhofer, 1821). Osnovni parametar difrakcijske rešetke je konstantna međusobna udaljenost *d*, dviju susjednih pukotina (tzv. konstanta rešetke). Od interesa je figura difrakcije u beskonačnosti, odnosno u fokalnoj ravnini konvergentnog optičkog sistema. Kad bi kutna raspodjela difraktiranog fluksa svake pojedine pukotine bila neovisna o kutu, relativna iradijancija figure difrakcije bila bi određena faktorom strukture

$$S(\vartheta) = \frac{\sin^2\left(\pi N \frac{d}{\lambda}\sin\vartheta\right)}{N^2 \sin^2\left(\pi \frac{d}{\lambda}\sin\vartheta\right)}.$$
 (153)

Za danu valnu duljinu λ i za dani broj N pukotina koje sudjeluju u difrakciji, $S(\vartheta)$ ovisi samo o konstanti d rešetke. Međutim, iradijancija difraktiranog zračenja iz pojedinih pukotina nije izotropna s obzirom na ϑ . Svaka pukotina ima svoju angularnu distribuciju iradijancije difraktiranog zračenja, određenu relacijom (147), koja se zove *faktor forme* $F_{\rm K}(\vartheta)$ klasične rešetke. To znači da je relativna iradijancija klasične rešetke u beskonačnosti, za normalno upadanje ravnog vala na makroskopsku ravninu rešetke, jednaka $F_{\rm K}(\vartheta) S(\vartheta)$. Faktor forme ima glavni maksimum pri $\vartheta = 0$, a minimume nula pri

$$\sin \vartheta = m \frac{\lambda}{b}, \quad m = \pm 1, \pm 2, \dots$$
 (154a)

Faktor strukture ima glavne maksimume pri

$$\sin \vartheta = p_1 \frac{\lambda}{d}; \quad p_1 = 0, \pm 1, \pm 2, \dots$$
 (154b)

To je *jednadžba rešetke* pri normalnom upadanju, koja pokazuje svojstvo disperzije optičke rešetke: uz jednake ostale uvjete kut difrakcije ϑ ovisan je samo o valnoj duljini λ .

Sl. 80. Pojednostavnjen shematski prikaz klasične difrakcijske rešetke za transmitiranu svjetlost

Sl. 81. Figura Youngove interferencije na kojoj se vidi i utjecaj difrakcije na jednoj pukotini

Najjednostavnija optička rešetka ima samo dvije paralelne pukotine (Youngov uređaj; sl. 62 a). Potpuna figura difrakcije Youngova eksperimenta prikazana je na sl. 81, koja jasno pokazuje utjecaj faktora strukture (sl. 80) i faktora forme (sl. 79 b). Ako paralelni snop svjetlosti upada na ravninu rešetke pod

kutom α (sl. 82 a), jednadžba rešetke za transmitiranu svjetlost poprima oblik

$$p_1 \lambda = d(\sin \alpha - \sin \vartheta). \tag{155a}$$

Optička rešetka najčešće se upotrebljava u reflektiranoj svjetlosti (sl. 82 b). Tada jednadžba rešetke glasi

$$p_1 \lambda = d(\sin \alpha + \sin \vartheta). \tag{155b}$$

Angularna je disperzija takve rešetke

$$\frac{\Delta \vartheta}{\Delta \lambda_{\rm R}} = \frac{\sin \alpha + \sin \vartheta}{\lambda \cos \vartheta},\tag{156}$$

gdje je $\Delta\lambda_{\rm R}$ interval valnih duljina koji se još može razlučiti, uzevši u obzir Rayleighov kriterij. Prema tom kriteriju smatra se da su valne duljine λ_1 i λ_2 razlučene ako se glavni maksimum figure difrakcije vala λ_2 poklapa s prvim minimumom figure difrakcije vala λ_1 . Angularna disperzija ovisi o kutovima koji se pri pokusu sa zadanom rešetkom upotrebljavaju. Napose, za $\alpha \approx \pi/2$ angularna disperzija poprima veoma velike vrijednosti, što se upotrebljava u tangencijalnoj spektrometriji.

Sl. 82. Shema difrakcije svjetlosti na rešetki. a za transmitiranu, b za reflektiranu svjetlost

Angularnoj disperziji rešetke pripada, u fokalnoj ravnini konvergentnog optičkog sistema (fokalne daljine f') u kojoj se promatra ili registrira spektar, *linearna disperzija*

$$\frac{\Delta\lambda_{\rm R}}{\Delta y} = \frac{d\cos\vartheta}{p_1 f'}.$$
(157)

Ona je to povoljnija što je red p_1 spektralne pruge veći i što je fokalna daljina optičkog sistema veća.

Instrumentalna širina spektralne linije definira se relacijom

$$\Delta \lambda_{\rm R} = \frac{\lambda}{p_1 N},\tag{158}$$

gdje je N broj brazdi rešetke koji je u eksperimentu iskorišten. Tipične rešetke imaju 500 \cdots 1000 brazdi po milimetru i nekoliko centimetara duge izbrazdane površine.

Kromatična moć razlučivanja definira se relacijom

$$\frac{\lambda}{\Delta\lambda_{\rm R}} = p_1 N. \tag{159}$$

Za zadanu rešetku omjer pripadnih valnih duljina jednak je omjeru sinusa kutova otklona

$$\frac{\lambda_1}{\lambda_2} = \frac{\sin \theta_1}{\sin \theta_2}.$$
 (160)

Svjetlost kraćih valnih duljina otklanja se manje nego svjetlost duljih. Za male kutove otklona omjer valnih duljina približno je jednak omjeru kutova otklona. To je prednost difrakcijske rešetke pred prizmom, no difrakcijska rešetka ima nezgodno svojstvo preklapanja spektara različitih redova, što treba posebno uzeti u obzir pri upotrebi spektrometra s rešetkom kao disperzijskim uređajem.

Ešelet-rešetka. Klasična optička rešetka ima nezgodno svojstvo da je najveći dio upadnog toka svjetlosti difraktiran u neinteresantni maksimum nultog reda, odnosno u sporedne maksimume faktora forme. Taj se nedostatak otklanja upotrebom tzv. ešelet-rešetke (franc. echelette, ljestvica) ili rešetke s odsjevom. Ešelet-rešetka ima brazde posebnog oblika (sl. 83). Za refleksiju rešetka ima niz paralelnih, uskih i dugačkih zrcala, koja su prema makroskopskoj ravnini rešetke nagnuta za *kut* odsjeva γ (R. W. Wood, 1910. i 1935).

Prikład nim izborom kuta odsjeva γ i kuta upadanja α može se postići da se faktor forme $F_{E}(\vartheta)$ ešelet-rešetke tako pomakne uzduž osi sin ϑ da mu se maksimum za zadanu valnu duljinu poklapa s maksimumom faktora strukture $S(\vartheta)$ odabranog reda. Faktor strukture je isti kao za klasičnu rešetku. Tada je normirani maksimum iradijancije $F_{\rm E}(\vartheta) S(\vartheta)$. Danas se brazdama difrakcijskih rešetki mogu, bilo pomoću mehaničkog djelitelja s posebno oblikovanim šiljkom, bilo holografski (v. *Holografija*, TE 6, str. 430), dati oblici koji zadovoljavaju potrebe spektrometrije.

Sl. 83. Transverzalni presjek ešeletrešetke za reflektiranu svjetlost

Trag makroskopske ravnine rešetke

Sl. 84. Shema difrakcije svjetlosti na kružnom otvoru

Difrakcija na kružnom otvoru. Ta je difrakcija od velikog značenja za centrirane optičke sisteme u kojima se uvijek pojavljuju kružni otvori (cirkularne aperture), makar se sistem sastojao od samo jedne leće kojoj rub ograničuje snop svjetlosti kao dijafragma. Geometrijski odnosi pri difrakciji na kružnom otvoru prikazani su na sl. 84. Relativna iradijancija određena je relacijom

$$E(\text{ir.})_{\text{rel}} = \left(\frac{2J_1 k r \sin \vartheta}{k r \sin \vartheta}\right)^2,$$
(161)

gdje je $k = 2 \pi/\lambda$, a J_1 Besselova funkcija prvog reda koja donekle liči prigušenoj sinusnoj funkciji. Na sl. 85 a prikazana je grafički relacija (161). Figura difrakcije je rotacijski simetrična s obzirom na os $E(ir.)_{rel}$, a r je radijus otvora. Prvi minimum pojavljuje se za $kr \sin \theta \approx 3.83$, pa je kutni radijus ϑ glavnog maksimuma određen relacijom

$$\sin \vartheta \approx \frac{3,83}{kr} \approx 1,22\frac{\lambda}{2r}.$$
 (162)

Maksimum difrakcije zove se Airyjev disk. Njegov je radijus r'_1 u fokalnoj daljini f' objektiva kojim se promatra figura difrakcije

$$r_1' \approx 1,22 \frac{f'\lambda}{2r}.$$
 (163)

Airyjev disk određuje maksimalno moguće razlučivanje optičkih instrumenata. Sl. 85 b prikazuje figuru difrakcije kružnog otvora pri Fraunhoferovu načinu promatranja. Budući da Fraunhofe-

Sl. 85. Difrakcija svjetlosti na kružnom otvoru. a grafički prikaz relativne iradijancije, b fotografija (pozitiv) figure difrakcije pri Fraunhoferovu načinu promatranja (centralni svijetli krug je tzv. Airyjev disk)

rova difrakcija na malom kružnom otvoru daje od točkastog izvora točkastu sliku (Airyjev disk), to kružni otvor može služiti kao element za preslikavanje (*camera obscura*).

Fazna rešetka. U uskoj staklenoj kiveti nalazi se neka tekućina. Dno kivete je mehanički vezano za kristalnu kvarcnu pločicu koja je piezoelektrična (sl. 86). Uzbuđena rezonantnim električnim poljem ona vibrira frekvencijom reda veličine 10⁶ Hz. Vibracije se prenose na tekućinu u kiveti gdje se širi longitudinalni ultrazvučni val koji može, ali ne mora, biti stacionaran. Zbog sinusne promjene vala zgušćenja, indeks refrakcije se sinusno mijenja uzduž (vertikalne) osi z. Dobivena je rešetka koja, zbog periodične promjene indeksa refrakcije, uzrokuje razliku faza između valova difraktiranih na toj, inače transparentnoj, strukturi. Klasična rešetka je amplitudna rešetka iza koje se amplitude stupnjevito mijenjaju. Ultrazvukom nastala rešetka u tekućini jest fazna rešetka: iza nje su amplitude vala konstantne, samo se faze mijenjaju. Zamjećivanje nevidljivih struktura, tj. struktura koje su konstantnog koeficijenta apsorp-

Sl. 86. Fazna difrakcijska rešetka stvorena ultrazvučnim valom u tekućini i shema nastajanja difrakcije pri Fraunhoferovu načinu promatranja. K kiveta s tekućinom, G visokofrekventni oscilator za pobuđivanje piezoelektričnog kristala

cije, kulminira u *faznom mikroskopu* (F. Zernike, 1935), koji omogućuje promatranje, npr., živih, dakle nebojadisanih bakterija. Nevidljive strukture mogu se učiniti zamjetljivim i faznom holografijom.

Fresnelova difrakcija

Bitne značajke eksperimentalnog dobivanja Fresnelovih figura difrakcije vide se na sl. 87. Naime, izvor I' je približno točkast i u konačnoj daljini x od objekta koji difraktira (kružni otvor), a zastor na kojem se zamjećuje figura difrakcije također je u konačnoj daljini x' od objekta. Fresnelova figura difrakcije nastaje i tada kad je izvor svjetlosti u beskonačnosti, a zastor blizu objekta, ili kad je zastor u beskonačnosti, a izvor blizu objekta. Time se Fresnelov uređaj razlikuje od Fraunhoferova, kojemu su izvor svjetlosti i ravnina opažanja u beskonačnosti. Naime, zapravo je tada izvor svjetlosti u fokusu, a ravnina opažanja je u fokalnoj ravnini konvergentnog sistema.

Sl. 87. Shema nastajanja Fresnelove difrakcije na kružnom otvoru

Povećanjem apscisa x i x' figura difrakcije postepeno prelazi u Fraunhoferovu figuru. Fresnel je postavio teoriju pomoću koje se mogu predvidjeti figure difrakcije u blizom polju, dopunivši Huygensov princip uvođenjem *faktora inklinacije* koji uzima u obzir da se amplituda Huygensovih elementarnih valića mijenja sa smjerom širenja, dok njihova amplituda u smjeru protivnom od širenja valne fronte ima vrijednost nula. Time je dao Huygensovoj teoriji strog matematički oblik, postavio je integral koji daje iradijanciju figure difrakcije u promatranoj točki i dao je metode rješavanja tog integrala. Jedna je od metoda tzv. *Fresnelov integral*, a druga su tzv. *Fresnelove* ili *poluvalne* ($\lambda/2$) zone.

Figura difrakcije na kružnom otvoru. Eksperimentalni uređaj prikazan je na sl. 87, a tri figure difrakcije vide se na sl. 88 a za različite parametre eksperimenta (v. legendu sl. 88 a). S povećanjem dijametra otvora, ako su x i x' konstantni, figura difrakcije se znatno mijenja, a svijetli centar postaje taman pa opet svijetao.

Difrakcija na kružnom zastoru. U eksperimentu prikazanom na sl. 87 zastor Z_2 se makne, a na mjesto gdje je u njemu bio kružni otvor stavi se neprozirna kružna zapreka (npr. kuglica kugličnog ležaja). Uz inače jednake eksperimentalne uvjete kao na sl. 88 a, dobivaju se figure difrakcije prikazane na sl. 88 b. One se bitno razlikuju od figura difrakcije otvora jednakih dija-

Sl. 88. Fotografije (pozitivi) Fresnelovih figura difrakcije. *a* na kružnim otvorima različitih dijametara (parametri prema sl. 87: x = x' = 12,5 m, $\lambda = 546$ nm; a dijametri slijeva nadesno 4,3 mm, 6,1 mm i 7,4 mm); *b* na kružnoj neprozirnoj zapreci (sjene kružnih pločica ili kuglice kojima su zamijenjeni otvori u prethodnom eksperimentu; *c* na neprozirnoj niti; *d* na rubu neprozirnog zastora (x = x' = 18 m, $\lambda = 650$ nm, točkast izvor)

metara po tome što figure difrakcije u geometrijskoj sjeni diska uvijek imaju svijetao centar, tzv. *Poissonovu točku*. Pojavljivanje Poissonove točke neovisno je o dimenziji diska (kugle), pa neprozirna kružna zapreka može služiti kao sistem za preslikavanje izvora *I*'.

Difrakcija na neprozirnoj niti. Figura Fresnelove difrakcije na neprozirnoj niti prikazana je na sl. 88 c. Centralna pruga je svijetla.

Figura difrakcije neprozirne poluravnine. S porastom dijametra bilo kružnog otvora bilo kružnog neprozirnog zastora broj prstenova se u svijetloj geometrijskoj projekciji otvora ili u geometrijskoj sjeni neprozirnog diska ne povećava. Figura se difrakcije u oba slučaja približava istom graničnom slučaju: obodu beskonačno velikog radijusa zakrivljenosti, naime ravnom bridu, ili jednostrano ograničenoj neprozirnoj poluravnini.

Tu graničnu figuru difrakcije prikazuje sl. 88 d. Na sl. 89 prikazana je relativna iradijancija takve figure difrakcije ovisno o udaljenosti od geometrijske sjene brida. Pretpostavljeno je da na brid pada ravni val. Veličina v_1 na osi apscisa je bezdimenzijska, a proporcionalna je udaljenosti od geometrijske sjene brida.

Fresnelova zonalna ploča. Fresnel je pokazao da difraktirajući zastor načinjen od koncentričnih kružnica kojima su radijusi proporcionalni drugim korijenima iz cijelih brojeva, dok je svaka druga površina koju omeđuju kružnice u ravnini zacrnjena, ima stigmatična svojstva. Time je nastala Fresnelova zonalna ploča (sl. 90 a). Od N zona ploče maksimalno se može

Sl. 90. a Fresnelova zonalna ploča ($\lambda/2$ ploča za $\lambda \approx 650$ nm, $f'_{max} \approx 2,7$ m; reprodukcija odgovara približno veličini originala); b difrakcija na niti (negativ, dijametar niti 0,5 mm); c difrakcija na pukotini (negativ, širina pukotine 0,5 mm, udaljenost difraktirajućeg elementa od fotografske ploče u oba primjera ~5 m); difrakcija na mnogo (~2000) rupica, jednakih dijametara (negativ, $d \approx 0,3$ mm), nepravilno raspoređenih na kružnoj ploči dijametra ~5 cm (Fraunhoferov način promatranja)

iskoristiti N/2 prozirnih zona. Zone su tako dimenzionirane da razlika hoda u točki M'_1 na osi x'x između valova iz dviju susjednih prozirnih zona iznosi λ , pa sve prozirne zone konstruktivno doprinose rezultantnoj amplitudi u M'_1 . Smatraju li se x i x' (tj. apscise točkastog predmeta i slike na osi xx' rotacijske simetrije zonalne ploče) algebarskim veličinama, s predznacima kao u geometrijskoj optici, tada vrijedi za zonalnu ploču jednadžba konjugacije

$$\frac{1}{x'} - \frac{1}{x} = \frac{\lambda}{r_1^2},$$
 (164)

gdje je λ valna duljina, a r_1 radijus prve propusne zone. Veličina

$$\frac{r_1^2}{\lambda} = f' \tag{165}$$

fokalna je daljina zonalne ploče. Postoje, međutim, sporedni i virtualni fokusi. Fresnelova zonalna ploča, zbog postojanja realnih i virtualnih fokusa i zbog svjetlosti difraktirane u nulti red, ima samo 1/10 efikasnosti leće s obzirom na sakupljanje svjetlosti u glavni fokus, a slika rasprostranjenog predmeta slabog je kontrasta. Međutim, zonalna je ploča interesantna za tumačenje holografije.

Babinetov teorem. U široki snop svjetlosti, ograničen dijafragmom D, unese se mala zapreka. Dijafragma D se zastre neprozirnim zastorom, a na mjestu gdje je bila mala zapreka učini se rupica kojoj je kontura jednaka konturi male zapreke. U oba slučaja promatra se figura difrakcije u prostoru koji je, zbog D, bio taman prije unošenja male zapreke u prvom eksperimentu. Nalazi se da u tom prostoru mala zapreka i njoj komplementarna rupica daju jednake figure difrakcije. Uspostavi li se početno stanje, figure difrakcije nestaju. Čitav otvor dijafragme D šalje, prema Huygens-Fresnelovu principu, u prostor iza dijafragme D elementarne valove koji međusobno interferiraju i koji se poništavaju. To znači da su amplitude valova difraktiranih u taj prostor komplementarnim zastorima međusobno jednake po vrijednosti, ali protivnih predznaka. Eksperimentalnu potvrdu tog tzv. Babinetova teorema prikazuje sl. 90 b i c. Jedna od njegovih posljedica jest difrakcija svjetlosti na mnogo malih, međusobno jednakih difraktirajućih elemenata, nepravilno raspoređenih. To mogu biti mnogobrojne, međusobno jednake male rupice u neprozirnom zastoru (sl. 90 d), ili neprozirni sitni difraktirajući elementi kao što su spore likopodija.

Duga. Već je M. De Dominis tumačio pojam duge refrakcijom i reflek sijom zraka svjetlosti u kapljicama kiše. Ako zraka svjetlosti uđe u kuglastu kaplju kiše, može se jedanput (glavna duga) ili dvaput (sporedna duga) totalno reflektirati. Točno pri zalazu Sunca na horizontu (iza opažača) opažač vidi glavnu dugu u obliku kružnog luka spektralnih boja, kutnog radijusa $42^{\circ}16'$ za crvenu svjetlost, a $40^{\circ}44'$ za ljubičastu. Sporedna duga ima veće kutne radijuse: $50^{\circ}22'$ za crvenu i $53^{\circ}24'$ za ljubičastu svjetlost (Descartes). Međutim, duga je mnogo složenija pojava koja se ne može potpuno rastumačiti samo zakonima geometrijske optike (v. *Meteorologija*, TE 8, str. 452). Potrebno je uzeti u obzir i difrakciju svjetlosti na kapljicama kiše (G. B. Airy, Peruter).

POLARIZACIJA SVJETLOSTI

Linearno polarizirani val svjetlosti može se prikazati izrazom

$$\vec{E}(t,z) = \vec{E}\cos\left(\omega t - kz\right). \tag{166}$$

ili nekim ekvivalentnim, realnim ili kompleksnim oblikom, npr. relacijom (1). Profil $\vec{E}(0,z)$ vala prema relaciji (2) samo je u jednoj ravnini vibracije. Takav val može nastati sastavljanjem dvaju linearno polariziranih, međusobno koherentnih, ravnih ortogonalnih valova, konstantne i određene razlike faza δ :

$$E_{\mathbf{x}}(t,z) = \hat{\mathbf{x}} E_{\mathbf{0}\mathbf{x}} \cos\left(\omega t - k z\right), \tag{167a}$$

$$E_{v}(t,z) = \hat{y} E_{ov} \cos(\omega t - k z + \delta), \qquad (167b)$$

gdje su x, y, z jedinični vektori pozitivnog koordinatnog sustava xyz u kojemu se uzduž pozitivne osi šire valovi. Da bi rezultantni val

$$\vec{E}(t,z) = \vec{E}_x(t,z) + \vec{E}_v(t,z)$$
 (168a)

bio linearno polariziran, mora biti: $\delta = \pm 2m2\pi$ ili $\delta = \pm m\pi$. U prvom slučaju rezultantni je val određen relacijom

$$E(t, z) = (\hat{x} E_{0x} + \hat{y} E_{0y}) \cos(\omega t - k z), \qquad (168b)$$

a u drugome izrazom

$$\vec{E}(t,z) = (\hat{x} E_{0x} - \hat{y} E_{0y}) \cos(\omega t - k z).$$
(168c)

Na sl. 91 a prikazan je u kosoj projekciji profil rezultantnog vala kad je $\delta = 0$ i $E_{0x} = E_{0y}$.

Cirkularno polarizirani val svjetlosti. Ako su razlike faza komponentnih valova (167)

$$\delta_1 = -\frac{\pi}{2} + 2m\pi; \quad m = 0, \pm 1, \pm 2, \dots,$$
 (169a)

ili

$$\delta_2 = \frac{\pi}{2} - 2m\pi; \quad m = 0, \pm 1, \pm 2, \dots,$$
 (169b)

uvrštavanjem δ_1 u (167b) dobiva se

$$E_{y}(t,z) = \hat{y} E_{0y} \sin(\omega t - k z), \qquad (170a)$$

a uvrštavanjem δ_2

$$E_{y}(t,z) = -\hat{y} E_{0y} \sin(\omega t - kz). \qquad (170b)$$

Sinteza valova (167a) i (170a), za $E_{0x} = E_{0y} = E_0$, daje

 $\vec{E}(t,z) = E_0 \hat{x} \cos(\omega t - kz) + \hat{y} \sin(\omega t - kz). \quad (171)$

Modul rezultantnog vala je konstanta i iznosi

$$|E(0,z)| = E_0 = \text{const.}$$
 (172)

Za bilo koje vrijednosti od z električno polje E(0, z) ostaje normalno na z (smjer širenja vala) i poprima orijentacije određene relacijom (171), pa je za t = 0

$$\vec{E}(0,z) = E_0 \left(\hat{x} \cos k \, z \, - \, \hat{y} \sin k \, z \right). \tag{173}$$

Ta je relacija profil cirkularno polariziranog vala, a val (171) je *lijevo cirkularno polariziran.* Prostorni period vala iznosi $2 \pi/k = \lambda$. Envelopa svih krajeva vektora $\vec{E}(0,z)$ je *lijeva helikoida.*

Razlike faza δ_2 (169b) daju rezultantni val

$$E(t,z) = E_0 \left[\hat{x} \cos\left(\omega t - k z\right) - \hat{v} \sin\left(\omega t - k z\right) \right], \quad (174a)$$

Sl. 91. Profili komponenata valova (lijevo) i profili rezultantnog vala (desno) koji se giblju u smjeru osi z brzinom c. a ortogonalni, međusobno koherentni, linearno polarizirani valovi jednakih amplituda koji su u fazi daju također linearno polarizirani val zakrenute ravnine vibracije: b ortogonalni, linearno polarizirani valovi jednakih amplituda pomaknuti u fazi daju cirkularno (u ovom primjeru desno) polarizirani val. Helikoid se translatira u smjeru osi z bez vrtnje: c ortogonalni, linearno polarizirani valovi nejednakih amplituda pomaknuti u fazi daju eliptički (u ovoni primjeru desno) polarizirani val. Eliptični helikoid translatira se bez vrtnje u smjeru osi z

686

kojemu je profil

$$\vec{E}(0, z) = E_0 (\hat{x} \cos k z + \hat{y} \sin k z)$$
 (174b)

desna helikoida, a val (174a) je desno cirkularno polariziran (sl. 91 b). Vremenska promjena električnog polja $\vec{E}(t,0)$ vala (171) u ravnini xy određena je relacijom

$$E(t,0) = E_0 (x \cos \omega t + y \sin \omega t), \qquad (174c)$$

koja pokazuje da kraj vektora $\vec{E}(t,0)$ opisuje kružnicu, i to u smislu protivnom od kazaljke na satu kad val nailazi prema opažaču. Konvencija je u optici da je svjetlost tada *lijevo cirkularno polarizirana*. Kutna frekvencija ophoda kružnice koju opisuje vektor $\vec{E}(t,0)$ jest $\omega = 2 \pi/T$. Slično se zaključuje da kraj vektora $\vec{E}(t,0)$ relacije (174b) opisuje kružnicu u smislu kazaljke na satu. On je *desno cirkularno polariziran*. Superpozicijom lijevo i desno cirkularno polariziranih valova iste frekvencije nastaje linearno polarizirani val. Obrnuto, linearno polarizirani val može se rastaviti u lijevo i desno cirkularno polarizirane valove.

Eliptički polarizirani val svjetlosti. Sastavljanje ortogonalnih, međusobno koherentnih, linearno polariziranih valova (167) rezultira u najopćenitijem obliku polarizacije: eliptičnoj polarizaciji. Posebni uvjeti s obzirom na razliku faza i amplituda komponentnih valova dovode do posebnih slučajeva linearno i lijevo ili desno polarizirane svjetlosti. Za razlike faza δ_1 određene relacijom (169a) rezultantni val je eliptički polariziran, pri čemu mu električno polje $\vec{E}(t,0)$ opisuje elipsu u lijevom smislu (obrnuto od kazaljke na satu). Za δ_2 (169b) rezultantni val je eliptički polariziran, i to u desnom smislu. Helikoida koju generira rezultantni vektor $\vec{E}(0,z)$ nije ovijena na uspravni cilindar cirkularne baze, već je ovijena na uspravni cilindar eliptične baze. Na sl. 91 c prikazani su profili ortogonalnih komponentnih valova i rezultantni eliptički desno polarizirani val.

Obična, nepolarizirana svjetlost. Razložno je smatrati da atom ili molekula emitira linearno polarizirani val. Budući da se makroskopski izvor svjetlosti sastoji od veoma mnogo pojedinačnih odašiljača, u svakom se trenutku električna polja linearno polariziranih valova sastavljaju u eliptički polarizirani val. Budući da se stanje polarizacije tog vala mijenja od trenutka do trenutka, nijedno od tih stanja ne dolazi do izražaja u intervalima vremena potrebnim za opažanje. Zamjećuje se stoga nepolarizirana ili obična svjetlost. Dva linearno polarizirana ortogonalna vala koja nisu međusobno koherentna daju rezul-

Sl. 92. Grafički prikaz polarizacije svjetlosti. *a* zraka linearno polarizirane svjetlosti kojoj je ravnina vibracije u ravnini crtanja; *b* ravnina je vibracije normalna na ravninu crtanja; *c* zraka negolarizirane svjetlosti

c zraka nepolarizirane svjetlosti

tantni val nepolarizirane inkoherentne svjetlosti. Obrnuto, val obične inkoherentne svjetlosti može se uvijek prikazati kao rezultanta dvaju inkoherentnih i međusobno inkoherentnih, linearno polariziranih valova jednakih amplituda. Izbor jedne od ravnina vibracije tih komponenata je proizvoljan. Odabere li se kao ravnina vibracije jednog komponentnog vala ravnina crtanja, tada je ravnina vibracije normalna na ravninu crtanja. Pripadni grafički simboli prikazani su na sl. 92.

Djelomično polarizirana svjetlost. Svjetlost ne mora biti ni potpuno polarizirana ni potpuno nepolarizirana: ona je tada djelomično polarizirana. Mjera tog stanja je stupanj polarizacije

$$P = \frac{E(\text{ir.})_{\text{P}}}{E(\text{ir.})_{\text{P}} + E(\text{ir.})_{\text{U}}} = \frac{\Phi_{\text{P}}}{\Phi_{\text{P}} + \Phi_{\text{U}}},$$
(175)

gdje je $E(ir.)_P + E(ir.)_U$ iradijancija ukupnog toka snopa svjetlosti kojoj polarizirani dio donosi iradijanciju $E(ir.)_P$, a nepolarizirani dio iradijanciju $E(ir.)_U$. Slično vrijedi za fluksove Φ svjetlosti.

Polarizacija svjetlosti na granici dvaju dioptrijskih sredstava

Polarizacija refleksijom. Dobivanje polarizirane svjetlosti iz nepolarizirane uvijek je rezultat interakcije svjetlosti s materijom. Refleksija je jedna od takvih interakcija. Da bi se odredila zakonitost pri refleksiji na dielektričnom zrcalu, prikladno je da dioptrijska ploha ima konični oblik (sl. 93a) (M. Paić, 1962). Ako paralelni cilindrični snop svjetlosti, primjerenog promjera, pada na konični dioptar tako da se os cilindričnog snopa poklapa s osi koničnog dioptra, reflektirana svjetlost tvori na nekom zastoru, normalnom na snop, kružni vijenac. Ravnina upadanja za koju je iradijancija kružnog vijenca maksimalna neka bude referentna ravnina s obzirom na koju se određuje azimut β drugih ravnina upadanja. Reflektancija dioptra pri kutu upadanja φ i pri azimutu β iznosi $\overline{\Phi}(\varphi,\beta)/\Phi_i \equiv$ $\equiv \varrho(\varphi, \beta)$. Ona se može normirati na maksimalnu reflektanciju za $\beta = 0$. Ako na konični dioptar upada nepolarizirana svjetlost, tj. svjetlost neposredno iz nekog izvora, polarni dijagram, s koordinatama $[(\varrho_{\varphi})_{norm},\beta]$, jest kružnica konstantnog radijusa $\rho_{\varphi} = 1$ (sl. 93 b). Međutim, ako na konusni dioptar bilo kojeg kuta otvora $(\pi/2) - \varphi$ pada svjetlost jednom reflektirana na dielektričnom zrcalu (istog kemijskog sastava kao konični dioptar), kružni vijenac više nije konstantne iradijancije. Polarni dijagram $[(\varrho_{\varphi})_{norm},\beta]$ poprima, općenito uzevši, oblik prikazan na sl. 93c ako se upotrijebe konusni dioptri različitih kutova otvora $(\pi/2) - \varphi$, a upadna je svjetlost prvobitno reflektirana pod kutom φ . Može biti da za kut $\varphi_{\rm P}$, nazvan kut polarizacije ili Brewsterov kut, i kut otvora $\pi/2 - \varphi_{\rm P}$ koničnog dioptra polarni dijagram relativne reflektancije poprimi, za valnu duljinu λ , oblik prikazan na sl. 93 d. Taj polarni dijagram odgovara funkciji

$$(\varrho_{\varphi P})_{\text{norm}} = \cos^2 \beta \,, \tag{176}$$

koja je karakterizirana minimumima s vrijednošću nula za

Sl. 93. Analiza polariziranosti svjetlosti. a konična dioptrijska ploha kao analizator; b polarni dijagram analize obične svjetlosti refleksijom na koničnom dioptru. Općenito je $(\varrho_{\alpha})_{norm} = f(\beta)$; c polarni dijagram analize djelomično linearno polarizirane svjetlosti na koničnom dioptru pri kutu upadanja φ ; bez obzira na kut koničnog otvora $\pi/2 - \varphi$, polarni dijagram zadržava sve svoje bitne značajke; d polarni dijagram potpuno linearno polarizirane svjetlosti pri kutu upadanja jednakom kutu polarizacije φ p

 $\beta = \pi/2$ i $3\pi/2$ (E. S. L. Malus). Ako mijenjanjem kuta $\pi/2 - \varphi$ koničnog dioptra i kuta φ prvobitne refleksije na dielektričnom zrcalu nije moguće dobiti polarni dijagram tipa (176), upadna svjetlost je djelomično polarizirana. Za tumačenje tih pojava potrebne su Fresnelove jednadžbe. Na sl. 94 prikazana je ravnina vibracije upadnog vala \vec{E}_i i ravnine vibracija

Sl. 94. Rastavljanje upadnog, reflektiranog i transmitiranog vala na pripadne ortogonalne, linearno polarizirane komponente: a ravnina je vibracije ortogonalnih komponenata $E_{||}$ u ravnini upadanja; b ravnina je vibracije ortogonalnih komponenata E_{\perp} normalna na ravninu upadanja

ortogonalnih komponenata $E_{i||}$ (u ravnini upadanja Π_P) i $E_{i\perp}$ (u ravnini normalnoj na ravninu Π_P), te pripadne ortogonalne komponente $E_{r||}$, $E_{t||}$, $E_{t\perp}$ i $E_{t\perp}$. Ako se primijene zakonitosti prijelaza električnog polja kroz granicu dielektrika koja dijeli dva optička sredstva, dobivaju se *Fresnelove jednadžbe*. One daju *amplitudne transmitancije* i *amplitudne reflektancije* ortogonalnih komponenata $E_{r||}$, $E_{t\perp}$, $E_{t\perp}$ i $E_{t\perp}$:

$$\frac{E_{\rm rll}}{E_{\rm ill}} \equiv \varrho_{\rm All} = \frac{n_2 \cos \varphi - n_1 \cos \chi}{n_2 \cos \varphi + n_1 \cos \chi},$$
(177a)

$$\frac{E_{t||}}{E_{i||}} \equiv \tau_{A||} = \frac{2n_1 \cos \varphi}{n_2 \cos \varphi + n_1 \cos \chi},$$
(177b)

$$\frac{E_{r\perp}}{E_{r\perp}} \equiv \varrho_{A\perp} = \frac{n_2 \cos \chi - n_1 \cos \varphi}{n_2 \cos \chi + n_1 \cos \varphi}, \qquad (177c)$$

$$\frac{E_{t\perp}}{E_{t\perp}} \equiv \tau_{A\perp} = \frac{2n_1\cos\varphi}{n_2\cos\varphi + n_1\cos\varphi},$$
(177d)

kojima se pomoću Snelliusova zakona mogu dati i drugi oblici. Te jednadžbe sadrže bitne informacije o refleksiji, transmisiji, polaziraciji i promjeni faza pri interakciji s graničnom plohom između dva dielektrična, homogena, slabo apsorbirajuća i izotropna sredstva. One vrijede za $n_1 < n_2$ i $n_1 > n_2$. Amplitudna reflektancija $\varrho_{A||}(\varphi)$, određena relacijom (177a), monotono se

 $\vec{E}_{r|l} = 0$

n

n 2

 $\vec{E}_{t||} = \vec{E}_{i||}$

mijenja od

$$\varrho_{\rm A||}(0) = \frac{n_2 - n_1}{n_2 + n_1},\tag{178}$$

preko $\rho_{A|}(\varphi_P) = 0$, do $\rho_{A|}(\pi/2) = -1$ za $n_2 > n_1$ i $\rho_{A|} = -1$ za $n_2 < n_1$. Kut φ_P određen je ekvivalentnim relacijama

$$\varphi_{\rm P} + \chi_{\rm P} = \frac{\pi}{2}, \quad \tan \varphi_{\rm P} = \frac{n_2}{n_1}, \quad \tan \chi_{\rm P} = \frac{n_1}{n_2}, \quad (179)$$

što ujedno znači da je pri χ_P reflektirana zraka normalna na zraku reflektiranu pri $\psi_P = \varphi_P$ (Brewsterov zakon). Amplitudna reflektancija $\varrho_{A\perp}(\varphi)$, određena relacijom (177c), monotono se mijenja od vrijednosti

$$\varrho_{A\perp}(0) = -\frac{n_2 - n_1}{n_2 + n_1} = -\varrho_{A\parallel}(0),$$
(180a)

preko ρ_A (ϕ_P), do vrijednosti

$$\varrho_{\mathsf{A}\perp}\left(\frac{\pi}{2}\right) = \varrho_{\mathsf{A}|}\left(\frac{\pi}{2}\right) = \overline{+} 1, \qquad (180b)$$

već prema tome da li je $n_2 > n_1$ ili je $n_2 < n_1$, a da pri tom $\varrho_{A\perp}$ ne prolazi kroz nulu. To znači da je pri φ_P amplitudna reflektancija $\varrho_{A\parallel}(\varphi_P)$ ortogonalne komponente $E_{i\parallel}$ (kojoj je ravnina vibracije u ravnini upadanja) poništena, tj. $\varrho_{A\parallel}(\varphi_P) = 0$, pa u reflektiranoj svjetlosti ostaje samo ortogonalna komponenta $E_{r\perp}$, ako je ima, amplitudne reflektancije $\varrho_{A\perp}(\varphi_P)$ (sl. 95 a). To je bit tumačenja refleksije na koničnom dioptru. Zbog disperzije φ_P je funkcija od λ . Refleksijom na dielektričnom zrcalu može se dobiti linearno polazirirana svjetlost. Za zrak, krunsko staklo i $\lambda \approx 0.6 \,\mu$ m Brewsterov kut je $\varphi_P \approx 56.3^\circ \cong 0.9328 \, \text{rad}$; za vodu 53,12° $\cong 0.9271 \, \text{rad}$.

Zbog definicije amplitudne refleksije

$$\varrho_{\rm A} \equiv \frac{E_{\rm r}}{E_{\rm i}},\tag{181}$$

reflektancije

 $\varrho = \frac{\Phi_{\rm r} + \Phi_{\rm r\parallel}}{\Phi_{\rm i}} \tag{182}$

i pretpostavke da je

$$E_{i\perp}^{2} = E_{i\parallel}^{2} = \frac{E_{i}^{2}}{2}, \qquad (183)$$

 $n_1 = 1$

 $=\frac{\pi}{4}$

Trag

ravning

n2=0,9

upadanja

 $\frac{9\pi}{18}$

Ø

reflektancija, ovisno o kutu upadanja, iznosi

$$\varrho \equiv \frac{1}{2} \left(\varrho_{A\perp}^2 + \varrho_{A\parallel}^2 \right) \equiv \frac{1}{2} \left(\varrho_{\perp} + \varrho_{\parallel} \right).$$
(184)

111

1111

11

 $\varphi = 0 \frac{\pi}{18}$

Sl. 95. Promjena polarizacije vala pri refleksiji na dielektriku i na metalu. *a* pri Brewsterovu kutu upadanja $\varphi_{\rm P}$ elektromagnetski linearno polarizirani val $\vec{E}_{i||}$ transmitiran je bez gubitaka refleksijom; *b* promjena orijentacije $\gamma_{\rm r}$ ravnine vibracije reflektiranog vala ovisno o kutu upadanja φ za linearno polarizirani val s azimutom $\gamma_i = \pi/4$, koji upada na granicu zrak-staklo; *c* kao *b*, samo za granicu staklo-zrak; *d* linearno polarizirana svjetlost ($\gamma_i = \pi/4$) reflektira se na metalu uvijek kao eliptički polarizirana svjetlost cosim za $\varphi = 0$ i $\varphi = \pi/2$

a

Relacije (178), (180a) i (184) daju za normalno upadanje

$$\varrho(0) = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2.$$
(185)

Stupanj je polarizacije (175) pri kutu upadanja φ na dielektrično zrcalo slabe apsorpcije

$$P_{\varphi} = \frac{(\varrho_{\perp} - \varrho_{\parallel})_{\varphi}}{(\varrho_{\perp} + \varrho_{\parallel})_{\varphi}}.$$
(186)

Budući da je $\varrho_{\perp} \equiv \varrho_{A\perp}^2$ i $\varrho_{\parallel} \equiv \varrho_{A\parallel}^2$, to se pomoću Fresnelovih jednadžbi (177a) i (177c) može nači P_{φ} .

Polarizacija transmisijom. Transmitancija na jednoj dioptrijskoj plohi, izražena pomoću amplitudnih transmitancija prema Fresnelovim jednadžbama (177b) i (177d), iznosi

$$\tau = \frac{1}{2} (\tau_{A\perp}^2 + \tau_{A\parallel}^2) \frac{n_2 \cos \chi}{n_1 \cos \varphi} = \frac{1}{2} (\tau_{\perp} + \tau_{\parallel}).$$
(187)

 τ je funkcija kuta upadanja φ na dioptrijsku plohu. Ako na dioptrijsku plohu upada obična svjetlost, transmitirana je svjetlost samo parcijalno polarizirana, s malim stupnjem polarizacije. Ako na planparalelnu ploču upada paralelni snop obične svjetlosti, tokovi ortogonalnih komponenata E_{\parallel} i E_{\perp} smanjili su se nakon prolaza kroz prvu plohu τ_{\parallel} , odnosno τ_{\perp} puta, pa je

$$\left(\frac{\tau_{\parallel}}{\tau_{\perp}}\right)_{1} = \frac{1}{\cos^{2}\left(\varphi - \chi\right)}.$$
 (188a)

Nakon prolaza kroz drugu plohu umanjenje iznosi

$$\begin{pmatrix} \tau_{\parallel} \\ \tau_{\perp} \end{pmatrix}_2 = \frac{1}{\cos^4(\varphi - \chi)}.$$
 (188b)

Stupanj je polarizacije transmitiranog toka svjetlosti

$$P = \frac{1 - \cos^4(\varphi - \chi)}{1 + \cos^4(\varphi - \chi)}.$$
 (189)

On raste od 0, za $\varphi = 0$, do 0,63, za $\varphi \approx \pi/2$. Ako je kut upadanja na planparalelnu ploču jednak kutu polarizacije, linearno polarizirana komponenta $E_{i||}$ transmitirana je kroz prvu dioptrijsku plohu bez gubitaka refleksijom. Budući da je kut refrakcije χ_P ujedno kut polarizacije za izlaznu plohu, ortogonalna komponenta $E_{i||}$ prolazi bez gubitka refleksijom (Brewsterov prozor). U laserima velike snage Brewsterovi prozori služe umjesto antirefleksnih slojeva koje bi snažni laserski snop razorio.

Ako na slog planparalelnih ploča, slabe apsorpcije, pada paralelni snop obične svjetlosti pod kutom φ_P , transmitirani snop je pri svakom prolazu kroz jednu dioptrijsku plohu siromašniji na ortogonalnoj komponenti E_{\perp} . Zbog toga stupanj polarizacije s obzirom na komponentu E_{\parallel} transmitiranog snopa raste pri svakom prolazu kroz jednu dioptrijsku plohu. Polarizatori načinjeni od sloga planparalelnih ploča primjenjuju se u vezi s laserskim snopovima velike snage koji bi razorili druge vrste polarizatora. Fresnelove relacije (177a do d) teorijski opravdavaju činjenicu da je pri interferenciji valova reflektiranih na optički gušćem i na optički rjeđem sredstvu potrebno uvesti razliku faza π da bi se ispravno interpretirale figure interferencije dobivene, npr., Lloydovim ili Newtonovim uređajem.

Fresnelove jednadžbe ujedno daju fazne promjene pri refleksiji ortogonalnih komponenata ovisno o kutu upadanja. One pokazuju također da se pri prijelazu svjetlosti iz optički gušćeg u optički rjeđe sredstvo ne pojavljuje skok u fazi.

u optički rjeđe sredstvo ne pojavljuje skok u fazi. Ako je azimut, $\gamma_i = (\pi/2) - \beta$, između ravnine vibracije i ravnine upadanja linearno polariziranog vala na dielektrično zrcalo različit od 0 ili $\pi/2$, reflektirani val na optički gušćem dielektričnom zrcalu mijenja orijentaciju γ_r svoje ravnine vibracije ovisno o kutu upadanja φ (sl. 95 b). Refleksija na optički rjeđem dielektričnom sredstvu uzrokuje eliptičku polarizaciju reflektiranog vala za $\varphi_t < \varphi < \pi/2$, gdje je φ_t kut totalne refleksije (sl. 95 c). Refleksija linearno polarizirane svjetlosti na metalnom zrcalu. Metali su supstancije koje veoma snažno apsorbiraju svjetlost, pa se uvodi kompleksni indeks refrakcije $n' = n - i\varkappa$, u kojemu se pojavljuje indeks apsorpcije, definiran relacijama (49) i (52). U eksperimentima pojavljuju se samo pozitivne vrijednosti $|\varrho_{A\parallel}|$ i $|\varrho_{A\perp}|$, amplitudnih reflektancija. Pri upadnim kutovima $\varphi = 0$ i $\varphi = \pi/2$, njihove apsolutne vrijednosti su jednake $|\varrho_{A\parallel}| = |\varrho_{A\perp}|$. Obje reflektancije su pri $\varphi = 0$ mnogo veće nego za dielektrična zrcala. $|\varrho_{A\parallel}|$ ima minimum veći od nule pri glavnom upadnom kutu $\overline{\varphi}$ koji je važan za određivanje kompleksnog indeksa refrakcije. U intervalu kutova upadanja $0 < \varphi < \pi/2$, isključivši granice, linearno polarizirani val reflektira se uvijek kao eliptički polarizirani val (sl. 95 d). Iz takvih elipsa može se izračunati razlika faza $|\delta_{\parallel} - \delta_{\perp}|$, koja se mijenja od π , preko $\pi/2$, (pri $\overline{\varphi}$), do nule.

PROLAZ SVJETLOSTI KROZ ANIZOTROPNA SREDSTVA

Kristali su s gledišta optike kontinuumi koji najčešće nisu izotropni, što znači da se u njima svjetlost u svim smjerovima, općenito uzevši, ne širi istom brzinom, što im daje značajna optička svojstva. S obzirom na optičke primjene naročito su interesantna dva kristala: kalcit i kvarc. To su *jednoosni kristali* koji imaju samo jedan smjer u kojem se svjetlost vlada kao kad se širi u izotropnom sredstvu. Taj se smjer zove optička os. Dvoosni kristali, kao što je tinjac (liskun), imaju dva takva smjera. Oni nemaju u optici veće značenje.

Optička svojstva kalcita. Na sl. 96 a prikazani su elementi simetrije kalcita (CaCO₃) (v. Kristalna optika, TE 7, str. 364). To su makroskopski elementi simetrije romboedra (sl. 96 b) koje ima i tijelo dobiveno kalanjem kalcita što se upotrebljava u optici. Važna je os simetrije c koja je ujedno optička os kalcita. Svaka ravnina u kojoj leži os c i normala na jednu od ploha kalanja glavni je presjek kristala (sl. 96 c, d i e). Od elemenata simetrije kalcita s obzirom na optička svojstva važna je u prvom redu os c, koja u optici poprima svojstvo osi rotacijske simetrije.

Birefringencija (dvolom) kalcita. Normalno na plohu kalanja kristala kalcita upada uski snop obične svjetlosti (sl. 97a). Iz suprotne plohe izlaze dva međusobno paralelna snopa: kalcit je birefringentan (dvoloman). Ordinarna (redovna) zraka o vlada se prema Snelliusovu zakonu; ekstraordinarna (izvanredna) zraka e refraktira se od normale usprkos tome što je $\varphi = 0$. Ako se kristal vrti oko smjera upadnog snopa, ordinarna zraka miruje, dok se ekstraordinarna zraka vrti zajedno s kristalom. Zrake o i e jesu i ostaju pri tom u ravnini glavnog presjeka. Analiza snopova o i e pokazuje da je kalcit rastavio upadni snop obične svjetlosti u dvije ortogonalne linearno polarizirane komponente, od kojih je ravnina vibracije komponente e u ravnini glavnog presjeka. Sastavljanjem komponenata o i e opet se dobiva obična svjetlost: komponente nisu koherentne. Upotrebom grafičkih simbola može se birefringencija kalcita simbolički prikazati kao na sl. 97 b.

Situacija je jednostavna tako dugo dok se ravnina upadanja poklapa s glavnim presjekom, pa se iz kutova otklona, kroz posebno u tu svrhu rezane prizme, metodom minimuma devijacije mogu naći indeksi refrakcije n_0 i n_e te ovisnost n_e o kutu koji ekstraordinarna zraka tvori s optičkom osi. Za $\gamma = 0$, $n_e = n_0$, tj. brzine su širenja ekstraordinarne i ordinarne zrake uzduž optičke osi međusobno jednake. Ako se γ povećava, n_e se smanjuje. Indeksi refrakcije n_0 i n_e mjereni za $\gamma = \pi/2$ (o i e se u kristalu šire normalno na optičku os) jesu glavni indeksi refrakcije. Indeksi refrakcije pokazuju izrazitu disperziju. Tako, npr., ako je $\lambda \approx 760$ nm, dobiva se $n_0 \approx 1,6500$, a $n_e \approx 1,4826$, ako je $\lambda \approx 397$ nm, tada je $n_0 \approx 1,6832$, a $n_e \approx$ $\approx 1,4977$. Dogovorno se razlika glavnih indeksa refrakcije $n_e - n_0$ zove birefringentnost (dvolomnost) kristala. Ona je za kalcit negativna.

Sl. 97. Birefringencija kalcita. *a* glavni je presjek kristala u ravnini crtanja: *i* upadna zraka, *o* ordinarna zraka, *e* ekstraordinarna zraka; *b* grafički prikaz birefringencije kalcita: *c* valne plohe, valne fronte i zrake u unutrašnjosti kalcita: valna ploha ordinarne zrake je sfera upisana u rotacijski elipsoid ekstraordinarne zrake

Ako se pretpostavi da je u jednoj točki u unutrašnjosti kalcita uzrokovana emisija svjetlosti, nastat će odmah dva vala: ordinarni i ekstraordinarni (sl. 97 c). Ordinarni je val V_o sferičan, a ekstraordinarni val V_e rotacijski elipsoidan. Ordinarne su zrake normalne na sferu V_o , a ekstraordinarne na elipsoid V_e . Sfera V_o upisana je u rotacijski elipsoid V_e . Kroz oba dirališta sfere i elipsoida prolazi optička os kristala. Uzduž te osi brzine su širenja zraka o i e međusobno jednake. Najveća je razlika između tih brzina u smjeru normalnom na optičku os. Električno polje \vec{E}_e vala nije u kristalu normalno na e-zraku. \vec{E}_e leži u glavnom presjeku: $\vec{E}_o \perp \vec{E}_e$. Razmak je valnih fronta Σ_e i Σ_o maksimalan pri $\gamma = \pi/2$; on je nula ako je $\gamma = 0$. Međusobni je razmak zraka o i e maksimalan ako je $\gamma = \pi/4$.

Pomoću Huygensova principa mogu se konstruirati valne fronte (ordinarna i ekstraordinarna) pri refrakciji upadnog ravnog vala na ulaznoj plohi kalcita (sl. 98).

Sl. 98. Huygensov princip primijenjen na refrakciji ravnog vala na plohi kalcita. Ordinarni val je sferičan, ekstraordinarni je elipsoidan: *CD* trag ordinarne valne plohe, *CF* trag ekstraordinarne valne plohe

Optička svojstva kvarca. Kristali kvarca (SiO₂) imaju ternarnu makroskopsku os simetrije i tri binarne osi, normalne na glavnu os, koje međusobno zatvaraju kut $2\pi/6$ (sl. 99). Iz položaja trapezoidnih ploha (označenih crno na slici) vidi se da postoje dvije enantiomorfne forme: lijeva i desna. Enantiomorfnost kvarca uvjetovana je njegovom unutrašnjom atomskom strukturom.

Sl. 99. Kristal kvarca. a lijevi, b desni

Birefringencija kvarca. Kvarc je jednoosni pozitivni $(n_e > n_o)$ birefringentni kristal. Optička os ima smjer ternarne osi. Ako je $\lambda \approx 589$ nm, tada su indeksi refrakcije $n_o = 1,54425$ i $n_e =$ = 1,55336, pa je njihova razlika $n_e - n_o = 0,0091$, dok je ta razlika za kalcit $n_e - n_o = -0,1720$. Elipsoid ekstraordinarne valne plohe kvarca upisan je u sferu ordinarne valne plohe. Sfera ordinarnog vala i rotacijski elipsoid ekstraordinarnog vala, međutim, na mjestima gdje optička os (ujedno os rotacijske simetrije obiju ploha) probada svaku od ploha, sasvim se ne dodiruju. To znači da uzduž optičke osi postoji mala razlika u brzini širenja ordinarne i ekstraordinarne zrake.

Kristali kao polarizatori

Rochonova prizma. Ta se prizma sastoji od dva, najčešće kvarcna, prizmatična segmenta, međusobno normalnih optičkih osi, rastavljenih tankim slojem zraka (sl. 100 a). U prvom segmentu upadni snop je paralelan s optičkom osi, pa nema birefringencije. Ravni upadni val širi se u sredstvu indeksa refrakcije $n_0 \approx 1,54$. Na dijagonalnoj međuplohi dolazi do birefringencije. Ordinarna zraka nastavlja svoj put u prvobitnom smjeru. Njena je ravnina vibracije normalna na optičku os drugog segmenta. Ekstraordinarna zraka vibrira paralelno s optičkom osi, što omogućuje da se na nju također primijeni Snellusov zakon: iz sredstva indeksa refrakcije $n_0 \approx 1,54$. refraktira se *e*-zraka u sredstvo indeksa refrakcije $n_e \approx 1,55$, tj. prema normali na međuplohu. Snop *o* ne dispergira, a snop *e* dispergira.

Wollastonova prizma. Ta se prizma sastoji od dva, najčešće kvarcna, zajedno sastavljena segmenta, posebno orijentiranih optičkih osi (sl. 100 b). Na ulaznu plohu normalno upada val obične svjetlosti. U prvom segmentu nastaje birefringencija, no oba vala, zbog $\varphi = 0$ i $\gamma = \pi/2$, nisu razdvojena. Ulazom u drugi segment električno je polje *e*-vala normalno na optičku os, pa se vlada kao *o*-val, na refrakciju kojega se primjenjuje Snelliusov zakon ($\chi > \varphi$). Iz prvog segmenta *o*-val prelazi u optički gušće sredstvo ($\chi < \varphi$). Iz Wollastonove prizme divergiraju dva linearno polarizirana snopa, međusobno normalnih ravnina vibracije. Wollastonova prizma nije akromatična, no divergencija snopova je dvostruko veća od one koja se dobiva Rochonovom prizmom.

Sl. 100. Presjeci birefringentnih prizama i kut zrakå u njima. a Rochonova kvarcna prizma, b Wollastonova kvarcna prizma, c Nicolova prizma, d Glan-Thompsonova prizma

Nicolova prizma. Ona je sastavljena od dva kalcitna segmenta, rezana i zalijepljena kanadskim balzamom, tako da se ordinarni snop na toj granici totalno reflektira, dok ekstraordinarni snop prelazi u drugi segment i izlazi kao linearno polazirirani val (sl. 100 c). Ravnina vibracije izlaznog vala paralelna je s glavnim presjekom kalcita.

Glan-Thompsonova prizma. Ulazna i izlazna ploha Glan-Thompsonove prizme normalne su na longitudinalni brid. Oba su prizmatična segmenta od kvarca ako se radi s laserskim snopovima (sl. 100 d). Za polarizaciju zračenja rubinskog lasera ($\lambda \approx 700$ nm), kut na bridu mora biti između 40,2° i 40,5°. Kut totalne refleksije iznosi 40,2° za ekstraordinarnu zraku, a 40,5° za ordinarnu zraku. Na dijagonalnom je međusloju ekstraordinarna zraka totalno reflektirana. Ordinarnu zraku koja izlazi iz prvog prizmatičnog segmenta gotovo paralelno s međuslojem drugi segment vraća refrakcijom opet u prvobitni smjer, pa ona napušta prizmu kao gotovo savršeno linearno polarizirana zraka.

Dihroizam i Polaroid. Veoma općenito svojstvo jednoosnih kristala jest da jednu od ortogonalnih komponenata u koje kristali razdvajaju upadni snop obične svjetlosti jače apsorbiraju nego drugu. Ta pojava, nazvana dihroizmom, naročito je interesantna kad se zbiva u vidljivom području. Danas su za dobivanje linearno polarizirane svjetlosti osobito važne folije od sintetskih materijala (polivinil-klorida), kojima su lanci linearnih molekula mehaničkom obradbom folija usmjereni međusobno paralelno, a vodikovi atomi u njima djelomično supstituirani atomima joda. Tako nastaje sistem paralelnih lanaca atoma joda: tzv. H-Polaroid (E. H. Land, 1932). Rad takva polarizatora može se razumjeti na temelju modela prikazanog na sl. 101. Na niz paralelnih lanaca joda pada snop nekoherentnog običnog zračenja. Ortogonalna komponenta tog vala s električnim poljem paralelnim s lancima joda sili elektrone u tim lancima na osciliranje, što uzrokuje apsorpciju te komponente.

Električno je polje druge komponente, normalne na lance joda, slabije apsorbirano. Ta linearno polarizirana komponenta stoga gotovo nesmetano prolazi folijom. Rezultira snop velikog stupnja polarizacije kojemu je električno polje normalno na lance joda i na smjer širenja svjetlosti. Smjer normalan na lance joda jest tzv. os transmisije. Ona je paralelna s ravninom vibracije transmitiranog linearno polariziranog vala. Os je transmisije u naočalima Polaroid vertikalna. Kad se ne traži veoma velika točnost s obzirom na polariziranost svjetlosti, danas se upotrebljavaju folije Polaroid.

Ako ravnina vibracije linearno polarizirane svjetlosti zatvara kut α s osi transmisije analizatora, relativna je iradijancija transmitiranog linearno polariziranog vala $\cos^2 \alpha$.

Polariziranje svjetlosti pomoću birefringentnih kristala. Redovito se od svakog birefringentnog kristala mogu načiniti tanke pločice, u kojima dvije, međusobno normalne osi imaju različite indekse refrakcije. Os (smjer) s manjim indeksom refrakcije je tzv. brza os b, a ona s većim indeksom refrakcije je tzv. polagana os p. Ortogonalna komponenta upadnog linearno polariziranog vala kojoj je električno polje paralelno s privilegiranim smjerom b širi se brže nego komponenta kojoj je električno polje paralelno s privilegiranim smjerom p. Stoga su i valne duljine komponenata u kristalu različite. Na izlazu iz kristalne pločice obje komponente imaju opet jednake valne duljine λ , no između komponenata postoji optička razlika hoda

$$\Delta l = d(n_e - n_o), \tag{190}$$

kojoj odgovara razlika faza

$$\delta = k \,\Delta l = 2 \,\pi \frac{\Delta l}{\lambda}.\tag{191}$$

Za promatranu kristalnu pločicu izborom njene debljine mogu se postići željene razlike faza; podešavanjem kuta α između jednog od privilegiranih smjerova, p ili b, mogu se dobiti željeni omjeri E_{ov}/E_{ox} amplituda ortogonalnih komponenata, jer je

$$E_{ox} = E_i \cos \alpha; \qquad E_{oy} = E_i \sin \alpha, \qquad (192)$$

gdje su osi koordinatnog sustava x i y stavljene paralelno s privilegiranim smjerovima pločice. Time su ostvareni potrebni uvjeti za eliptičku polarizaciju svjetlosti koja izlazi iz pločice. Shema je takva eksperimenta na sl. 102.

Sl. 102. Shema uređaja za dobivanje eliptički polarizirane svjetlosti pomoću birefringentne pločice: Σ_i valna ploha upadnog, ravnog linearno polariziranog vala $\vec{E}_i(t,z)$; $\vec{E}(t,z)$ izlazni eliptički polarizirani val; *B* kvarcna birefringentna pločica; *P* polarizator (Polaroid)

Kao što se pomoću kristalnih pločica može dobiti eliptički polarizirana svjetlost u najširem smislu, tako i kristalne pločice poznate debljine i orijentacije brze i polagane osi mogu služiti za analizu polarizirane svjetlosti.

Interferencija linearno polarizirane svjetlosti. Fresnel i Arago pokazali su da dva linearno polarizirana, međusobno koherentna vala svjetlosti mogu dati interferenciju samo ako su im zajedničke ravnine vibracije. Ako upada ravni monokromatski val linearno polarizirane svjetlosti normalno na birefringentnu kristalnu pločicu, nastaju u njoj dvije, međusobno koherentne, no ortogonalne komponente. Komponente imaju određene razlike faza, a na izlazu iz pločice daju eliptički polariziranu svjetlost. Da bi se ostvarili uvjeti za interferenciju, izlazna, eliptički polarizirana svjetlost pušta se kroz analizator. On rastavlja svaku od ortogonalnih komponenata eliptički polarizirane svjetlosti na dvije komponente. No, analizator propušta, zbog (192), samo komponente tih komponenata projicirane na os transmisije analizatora. Ostale dvije ne propušta. Transmitirane komponente imaju paralelne ravnine vibracije i neku razliku faza nastalu u kristalnoj pločici. Zato one interferiraju. Eksperimentalni uređaj za dobivanje interferencija s polariziranom svjetlošću prikazan je na sl. 103. Dva su položaja važna: analizator i polarizator su ukršteni ($\alpha = \pi/2$), ili analizator i polarizator su paralelni ($\alpha = 0$). Iluminancija slike pločice na zastoru mijenja se ako se pločica vrti oko osi Oz. Upotrijebi li se bijela termička svjetlost, slika pločice je obojena. Boja se mijenja zakretanjem pločice, a ovisi i o tome da li su analizator i polarizator paralelni ili ukršteni. Ako pločica nije konstantne debljine, svako područje stalne debljine daje sliku različite boje. Boje su pri $A \perp P$ i $A \parallel P$, za isti α , komplementarne. Ako su smjerovi transmisije pri $A \parallel P$ paralelni s jednim od privilegiranih smjerova pločice, svjetlost svake valne duljine uzrokuje maksimalnu iluminanciju, a slika pločice je bijela. Ako su, pri

 $A \perp P$, privilegirani smjerovi paralelni s osima transmisije analizatora odnosno polarizatora, svaka valna duljina je poništena. Slika je tamna. Tako se mogu odrediti privilegirani smjerovi birefringentne pločice.

Sl. 103. Shema uređaja za dobivanje interferencije linearno polarizirane monokromatske svjetlosti. I izvor, F interferencijski filtar, L_1 kolimatorska leća, P polarizator, B birefringentna pločica, A analizator, L_2 projekcijska leća, Z zastor (polarizator i analizator su ukršteni)

Ako na kristalnu birefringentnu planparalelnu pločicu pada divergentni snop monokromatskih, linearno polariziranih zraka, iz pločice izlaze konični ekvifazni snopovi. Oni su eliptički polarizirani. Razlika je faza δ njihovih ortogonalnih komponenata konstantna za optičke putove, prevaljene u pločici pod kutovima refrakcije χ_0 i χ_e . Prolazi li izlazna svjetlost kroz analizator, komponente kojima su ravnine vibracije paralelne s osi transmisije analizatora međusobno interferiraju. Ako je pločica rezana normalno na optičku os, a centralna je zraka divergentnog upadnog snopa normalna na pločicu, pri ukrštenom polarizatoru i analizatoru figura interferencije sastoji se od koncentričnih svijetlih prstenova i tamnog križa (sl. 104). Križ odgovara područjima u kojima je ravnina vibracije upadnog, linearno polariziranog vala gotovo paralelna ili gotovo normalna na privilegirane smjerove kristalne pločice.

Sl. 104. Fotografije figura interferencije (pozitivi) dobiveni birefringentnim kristalima: a pločicom kalcita, debljine 2 mm, rezanom normalno na optičku os, uz divergentnu natrijevu svjetlost, polarizator i analizator ukršteni; b dvoosnim kristalom (brazilski topaz)

Sl. 104 primjer je figure interferencije nastale divergentnom, linearno polariziranom svjetlošću nekog dvoosnog kristala. Pločica (brazilski topaz) je rezana tako da ravnina pločice tvori jednak kut sa svakom od optičkih osi.

Rayleighovo raspršenje. Padne li neko primarno zračenje na malu česticu, koja može biti sastavljena od velikog broja molekula ili je samo jedna molekula, jedan atom ili jedan elektron, čestica postaje izvor sekundarnog zračenja. Ta je pojava raspršenje zračenja. Ako su dimenzije čestica koje raspršuju zračenje mnogo manje od valne duljine svjetlosti, a razmak je čestica dovoljno velik da koherentno raspršeno zračenje na sujednim česticama nije interferencijom poništeno, radi se o Rayleighovu raspršenju (1871). Tada je iradijancija raspršenog zračenja simetrična s obzirom na ravninu normalnu na paralelni primarni snop svjetlosti. Koeficijent raspršenja proporcionalan je broju

raspršujućih čestica u jedinici volumena i veličini $1/\lambda^4$. Raspršena je svjetlost linearno polarizirana s ravninom vibracije normalnom na primarni snop. U smjeru primarnog snopa i u protivnom smjeru ona nije polarizirana. Najveličanstveniji primjer Rayleighova raspršenja je raspršenje Sunčeve svjetlosti na Zemljinoj atmosferi. Atmosfera zadovoljava uvjete Rayleighova raspršenja, pa, okomito na Sunčeve zrake, veoma raspršuje kratkovalno područje Sunčeve svjetlosti. Raspršena je svjetlost linearno polarizirana s ravninom polarizacije normalnom na primarni smjer Sunčevih zraka. U tom smjeru je i plavetnilo neba najizrazitije. U smjeru Sunčevih zraka svjetlost nije polarizirana i kratkovalni je dio spektra oslabljen. Zrake izlazećeg ili zalazećeg Sunca prolaze veći put u atmosferi nego kad je Sunce visoko iznad horizonta. Stoga je raspršenje kratkovalnog dijela svjetlosti znatno, a u primarnom snopu Sunčeve svjetlosti, koji dopire do opažača, prevladava dugovalni neraspršeni dio spektra. Sunce na izlazu ili zalazu čini se stoga crvenkasto.

Birefringencija uzrokovana vanjskim utjecajima

Mehaničko naprezanje. Na dvije suprotne plohe staklenoga, izotropnog i homogenog cilindra normalno djeluju jednolično raspodijeljene tlačne ili vlačne sile. Staklo postaje birefringentno i vlada se kao jednoosni kristal. Optička os jesu pravci nosioci nametnutih sila (T. J. Seebeck). Birefringentnost $n_e - n_o$ funkcija je naprezanja. Nestankom naprezanja nestaje birefringencija. Mehaničkim utjecajima uzrokovana birefringencija mnogo se primjenjuje (Brewster, 1816) u projektiranju mehaničkih i građevnih konstrukcija. Načini se model iz plastičnoga prozirnog materijala (pleksi-staklo), koji se postepeno opterećuje i pri tom se promatra (i eventualno mjeri) birefringentnost pojedinih elemenata konstrukcije, kako je shematski prikazano na sl. 103. (Kristalna pločica B zamijenjena je elementom konstrukcije koji se proučava). Sl. 105 daje rezultat veoma jednostavnog naprezanja (v. *Fotoelasticimetrija*, TE 5, str. 525).

Sl. 105. Fotografija figure interferencije paralelnog snopa svjetlosti pri prolazu kroz gredu od prozirnog materijala, savinutu stalnim momentom savijanja; analizator i polarizator su ukršteni

Staklene aparature, načinjene puhanjem stakla, hlađene nedovoljno polagano i jednolično jesu sjedište unutrašnjih mehaničkih naprezanja, koja se mogu ispitivanjem birefringencije, između dvije folije Polaroid, ustanoviti i naknadnom termičkom obradbom odstraniti.

Strujanje tekućina. U tekućinama u kojima ima molekula posebnih oblika, te se molekule orijentiraju strujanjem približno paralelno sa strujnicama. Brzina širenja svjetlosti nije tada ista paralelno sa strujanjem molekula i normalno na taj smjer. Tekućina je postala birefringentna kao jednoosni kristal. Optička os joj je paralelna sa smjerom strujanja. Ta pojava može služiti za proučavanje strujanja tekućina oko zapreka kao što su, npr., modeli brodova. U veoma tankim slojevima nekih tekućina, debljine reda veličine duljine molekule, mogu se i bez strujanja pojaviti međusobno paralelne orijentacije molekula. Nastaju tzv. *birefringentni tekući kristali.*

Utjecaj električnog polja

Kerrov elektrooptički efekt. Izotropno staklo pod utjecajem električnog polja postaje birefringentno (J. Kerr, 1875). Dok električno polje djeluje, staklo se vlada kao jednoosni kristal s optičkom osi paralelnom s nametnutim električnim poljem. Nestankom električnog polja nestaje nakon nekoliko sekunda i birefringencija stakla. Kerrov elektrooptički efekt postoji i u tekućinama i plinovima s polarnim molekulama. Uspostavljanje i nestajanje birefringencije u tekućinama veoma je brzo. Između ukrštenih polarizatora i analizatora, uz upotrebu prikladne polarne tekućine, vrijeme uspostavljanja i gašenja prolaza linearno polarizirane svjetlosti može biti reda veličine 10^{-8} s. Zato se u laserskoj optici Kerrova ćelija upotrebljava kao veoma brzi prekidač. S nitrobenzolom mogu se postići modulacije svjetlosnog fluksa frekvencija i viših od 10^8 Hz. Ako je *E* jakost električnog polja u tekućini, λ valna duljina upotrijebljene svjetlosti, a *B* Kerrova konstanta, tada Kerrov zakon birefringencije glasi

$$n_e - n_o = B E^2 \lambda. \tag{193}$$

Nitrobenzol ima najveću, dosad poznatu, Kerrovu konstantu. Za nitrobenzol je, pri 293 K i za $\lambda = 546$ nm, Kerrova konstanta $B = 4.4 \cdot 10^{-12} \text{ V}^{-2} \text{ m}.$

Pockelsov elektrooptički efekt. Ako se na neke kristale, kao što je KH_2PO_4 , nametne električno polje paralelno s optičkom osi, ono deformira kristal i uzrokuje još jednu optičku os OO', normalnu na električno polje i određenu strukturom kristala. Zrake svjetlosti koje se šire paralelno s električnim poljem, a kojima je ravnina vibracije paralelna s osi OO', imaju indeks refrakcije različit od onih zraka kojima je ravnina vibracije normalna na OO'. To znači da se kristal, pod utjecajem električnog polja, vlada kao jednoosni kristal, s optičkom osi normalnom na smjer električnog polja i s njime paralelnog širenja svjetlosti. Tako nastala birefringencija je proporcionalna nametnutom električnom polju

$$(n_0 - n_c)' = p E, (194)$$

gdje je *p* konstanta proporcionalnosti Pockelsova efekta. Za KH_2PO_4 iznosi $p = 3,6 \cdot 10^{+11} \text{ m/V}$, a za litij-niobat ona je $3,7 \cdot 10^{-10} \text{ m/V}$.

Opisani je efekt longitudinalnog tipa jer je nametnuto električno polje paralelno s prvobitnom optičkom osi kristala. Postoji i transverzalni Pockelsov elektrooptički efekt ako je nametnuto električno polje normalno na prvobitnu optičku os kristala. Ćelija za tranverzalni efekt ima nekih praktičnih prednosti pred ćelijom za longitudinalni efekt. Osobito ako svjetlost prolazi između elektroda, a ne kroz njih, uz stalni razmak elektroda, zaostajanje u fazi između ordinarne i ekstraordinarne zrake raste s duljinom kristala. Pockelsove ćelije rade s manjim naponom nego Kerrove ćelije, pa su zato gotovo istisnule Kerrove ćelije kao brze prekidače snopa svjetlosti. Pockelsova ćelija može služiti za moduliranje snopa svjetlosti. Za amplitudnu modulaciju ona je smještena između ukrštenih analizatora i polarizatora, a na elektrode djeluje u vremenu promjenljivo električno polje. Optička os OO' orijentirana je pod kutom $\pi/4$ prema osi polarizatora.

Razlika faza (retardacija) uzrokovana električnim poljem proporcionalna je naponu između elektroda. Ako V_{π} označuje napon za koji je razlika faza $k(\lambda/2) = \pi$, tada je za napon V razlika faza $\pi V/V_{\pi}$. Transmitancija je modulatora sin²($\pi V/2 V_{\perp}$). Ako je Pockelsova ćelija modulirana oko napona $V_{\pi}/2$, modulacija će biti linearna. No, nametanje je napona $V_{\pi}/2$ ekvivalentno umetanju u snop pločice debljine $\lambda/4$, pa elektrooptički modulator može biti moduliran oko napona nula i može dati linearnu modulaciju.

Svjetlost može biti i fazno modulirana pomoću Pockelsove ćelije. Ta je modulacija ekvivalentna moduliranju frekvencije. Tada je ravnina vibracije upadnog zračenja paralelna ili normalna na optičku os OO'. Svjetlost ostaje linearno polarizirana, no faza se mijenja za iznos

$$\varphi = k \, p \, E \, d \,, \tag{195}$$

gdje je *d* debljina kristala, a $k = 2\pi/\lambda$. Takav se elektrooptički modulator faze može primijeniti u optičkim komunikacijama.

Utjecaj magnetskog polja

Cotton-Moutonov magnetooptički efekt. Ako se u prethodnom eksperimentu električno polje zamijeni magnetskim, tekućina postaje birefringentna. To je Cotton-Moutonov (1905) magnetooptički efekt. Pojava je analogna Kerrovu elektrooptičkom efektu, no i uz veoma jake magnetske indukcije (2 T) ona je veoma slaba. Nitrobenzol se vlada kao pozitivni jednoosni kristal, s optičkom osi paralelnom s magnetskom indukcijom, dok se sumpor-ugljik (CS₂) vlada kao negativni jednoosni kristal. Birefringencija slijedi zakon

$$n_{\rm e} - n_{\rm o} = C \,\lambda B^2,\tag{196}$$

gdje je C Cotton-Moutonova konstanta, a B magnetska indukcija. Za nitrobenzol, pri 293 K, za $\lambda \approx 546$ nm iznosi $C = 2,46 \cdot 10^{-12} \text{ m}^{-1} \text{ T}^{-2}$.

Zakretanje ravnine vibracije svjetlosti

Optički aktivne tvari. Pločica kristala kvarca, rezana normalno na optičku os, stavljena je između ukrštenih polarizatora i analizatora. Iradijancija monokromatske svjetlosti, koja je prije smještanja pločice bila nula, postiže neku vrijednost različitu od nule (Arago, 1811). Svjetlost je ostala prolazom kroz kvarc linearno polarizirana, jer se zakretanjem analizatora iradijancija može opet dovesti na nulu. Prolazom linearno polarizirane svjetlosti kroz kvarcnu pločicu došlo je samo do zakretanja ravnine vibracije. Ako gledajući u svjetlost koja izlazi iz analizatora treba analizator zakrenuti udesno, kvarc je desni. Ako analizator treba zakrenuti ulijevo, on je lijevi (sl. 99). Ta su svojstva vezana uz atomsku strukturu kristala kvarca, koja može imati desnu ili lijevu mikroskopsku ternarnu os rotacije--translacije. Fresnel je rastumačio zakretanja ravnine polarizacije cirkularnom birefringencijom. Naime, linearno polarizirani val može se rastaviti u dva cirkularno polarizirana vala, lijevi i desni, koji se uzduž optičke osi kvarca ne šire jednakim brzinama. Na izlazu oni opet tvore linearno polarizirani val. Zbog razlike faza nastale u kvarcu rezultantna ravnina vibracije je zakrenuta za neki kut. Prema unutrašnjoj kristalnoj strukturi to zakretanje može biti lijevo ili desno. Ako se umjesto monokromatske svjetlosti upotrijebi bijela termička svjetlost, iz analizatora izlazi obojena svjetlost, jer je kut zakretanja ravnine polarizacije proporcionalan sa $1/\lambda^2$. Jednim položajem analizatora ne može se poništiti više od jedne valne duljine svjetlosti koja je prošla kvarcnom pločicom. Preostale valne duljine daju osjet boje. Ako je kvarcna pločica veoma debela, iz analizatora izlazi bijela svjetlost višeg reda. Optička aktivnost nije vezana samo uz kvarc, ili samo uz kristale. Nju pokazuju i tekućine (J. B. Biot, 1811) ako su sastavljene od asimetričnih molekula ili ako su otopine takvih molekula. Optički aktivni spojevi u otopini zakreću ravninu polarizacije monokromatske svjetlosti proporcionalno koncentraciji c tvari u otopini i duljini l otopine kroz koju je prošao snop linearne polarizirane svjetlosti (Biotov zakon)

$$a = K l c, \tag{197}$$

gdje je K konstanta proporcionalnosti, koja veoma brzo raste ako valna duljina pada, ali nije znatno osjetljiva ni na temperaturu ni na koncentraciju. Budući da se kut zakretanja ravnine vibracije može lako i točno mjeriti, upotrebljava se Biotov zakon, napose za određivanje koncentracije različitih vrsta šećera pomoću saharimetara. Obični šećer (saharoza) zakreće ravninu vibracije desno, a voćni je šećer (fruktoza) zakreće lijevo.

0

Faradayev efekt. Ako na stakleni (dijamagnetski) štapić djeluje magnetsko polje, a uzduž tog magnetskog polja u staklu se širi linearno polarizirani val, ravnina se vibracije vala zakreće (M. Faraday, 1845). Kut zakretanja ravnine vibracije određen je *Verdetovim zakonom*

$$\alpha = V \vec{B} l, \tag{198}$$

gdje je V Verdetova konstanta koja, npr., za krunsko staklo pri 291 K iznosi 4,68 rad $T^{-1}m^{-1}$.

Kerrov magnetooptički efekt. Ako linearno polarizirana svjetlost pada na feromagnetsko zrcalo u jakom magnetskom polju, reflektirana je svjetlost opet linearno polazirirana, ali joj je ravnina vibracije zakrenuta s obzirom na ravninu vibracije u odsutnosti magnetskog polja. Kut zakretanja ovisi o magnetizaciji feromagnetika, pa magnetooptički Kerrov efekt (1876) teži zasićenju kao i magnetizacija materijala. Akustičkooptički modulator svjetlosti. Ako se u prozirnom piezoelektričnom kristalu širi val ultrazvuka, u kristalu nastaju promjene indeksa refrakcije zbog kompresije i dilatacije. Kristal se može smatrati nizom paralelnih ravnina jednakih indeksa refrakcije, razmaknutih za valnu duljinu λ_s ultrazvuka. Na tim ravninama dolazi do refleksija ako su na pojedinim ravninama reflektirani valovi međusobno u fazi, što se zbiva ako zadovoljavaju Braggovu relaciju kad je m = 1,

$$\lambda = 2d\sin\vartheta = 2\lambda_{\rm s}\sin\vartheta,\tag{199}$$

gdje je kut ϑ komplementaran kutu upadanja φ . U prikladnim uvjetima gotovo čitav upadni fluks može biti otklonjen. Bitno je da reflektirani snop ima frekvenciju koja se malo razlikuje od frekvencije upadnog snopa. Tome je uzrok pomicanje ravnina refleksije, komponentom brzine $v_s \sin \vartheta$, u smjeru širenja upadne svjetlosti i u protivnom smjeru, što uzrokuje Dopplerov efekt. Promjena frekvencije jednaka je frekvenciji ultrazvuka. Akustičkooptički deflektori upotrebljavaju se za frekvencijsku modulaciju svjetlosti i za precizno otklanjanje snopa.

NELINEARNA OPTIKA

U klasičnoj optici smatra se da je dielektrična polarizacija \vec{P} , jednaka induciranom dipolnom momentu po jedinici volumena dielektrika, proporcionalna uzbudnom električnom polju \vec{E} , pa je

$$\vec{P} = \alpha \vec{E}, \tag{200}$$

gdje je α električna polarizabilnost, svojstvo dielektrika. U većini slučajeva α ima konstantnu vrijednost. Električni dipoli osciliraju s frekvencijom uzbudnog električnog polja elektromagnetskog vala, ali ne nužno s istom fazom. Klasična elektrodinamika pokazuje da svaki oscilirajući dipol zrači elektromagnetski val kojemu je frekvencija jednaka frekvenciji oscilacije dipola. Sredstvo zrači val frekvencije upadnog vala tako dugo dok vrijedi proporcionalnost (200). To je, npr., omogućilo izvesti Fresnelove jednadžbe, koje daju zakone refleksije, refrakcije i polarizacije svjetlosti u međudjelovanju s dielektrikom. Ako električno polje postane veoma jako, kao što to može biti pri upotrebi intenzivnog laserskog zračenja (v. *Laser*, TE 7, str. 465), relacija (200) više ne vrijedi. Tada se αE može smatrati prvim članom reda

$$\vec{P} = \alpha_1 \vec{E}^2 + \alpha_2 \vec{E}^2 + \alpha_3 \vec{E}^3 + \cdots,$$
(201)

gdje su $\alpha_1, \alpha_2, \alpha_3, \dots$ nelinearne polarizabilnosti.

Nastajanje druge harmonijske frekvencije. Ako se pretpostavi da je upadno polje harmonično

$$\vec{E} = E_0 \sin \omega t, \qquad (202)$$

primjenom trigonometrijskih identiteta može se (201) pisati u obliku

$$\vec{P} = \alpha_1 \vec{E}_0 \sin \omega t + \left(\frac{\alpha_0}{2}\right) \vec{E}_0^2 - \left(\frac{\alpha_2}{2}\right) \vec{E}_0^2 \cos 2 \omega t - \left(\frac{\alpha_3}{4}\right) \vec{E}_0^3 \sin 3 \omega t, \dots$$
(203)

Od naročitog je interesa član koji sadrži 2ω , jer predočuje dipolne momente koji osciliraju dvostrukom frekvencijom upadnog zračenja. Takve oscilacije generiraju elektromagnetske valove frekvencija 2ω , tj. drugu harmonijsku frekvenciju upadnog zračenja A. E. Hill, C. W. Peters i G. Weinreich (1961) dobili su pomoću impulsnog rubinskog lasera snage jednog impulsa 3 kW i valne duljine ~694,3 nm, iako s veoma malom efikasnošću od 10^{-8} , zračenje druge harmonijske frekvencije valne duljine ~347,15 nm. Danas se upotrebom snažnijih lasera (u infracrvenom području) i s prikladnijim supstancijama (KH₂PO₄) postižu druge harmonijske frekvencije s efikasnošću od 10^{-1} .

Parametarska pojačala. Nelinearna električna polarizacija $\alpha_2 \vec{E}^2$ iz (201) može se smatrati rezultatom uzbude električnim poljima $E_1 \sin \omega_1 t$ i $\vec{E}_2 \sin \omega_2 t$. Ako se kvadrat te sume razvije

u red, pojavljuju se članovi $2\omega_1$ i $2\omega_2$, te član $2\vec{E}_1\vec{E}_2\alpha_2$. $\sin\omega_1 t \sin\omega_2 t$, koji se može pisati u obliku

$$E_1 E_2 \alpha_2 \left[\cos(\omega_1 - \omega_2)t - \cos(\omega_1 + \omega_2)t \right]. \tag{204}$$

To znači da oscilirajuća, nelinearna, inducirana električna polarizacija, a time i emitirana svjetlost, sadrži frekvencije $\omega_1 + \omega_2$ i $\omega_1 - \omega_2$. Proces kojim se ti valovi dobivaju je parametarsko pojačanje (C. C. Wang i G. W. Racete, 1965). Da bi se postigao jaki fluks zračenja iz parametarskog pojačala, ono se može staviti u optičku rezonantnu šupljinu. Mod lasera koji pumpa parametarsko pojačalo usklađen je s rezonatorom. Zrcala rezonatora imaju velike reflektancije za ω_1 i ω_2 . Ako je pumpanje pomoću lasera dovoljno, parametarsko pojačalo, npr. monokristal (NH₄)H₂PO₄, oscilira slično kao laser, i to s frekvencijama ω_1 i ω_2 (parametarska oscilacija). Parametarski oscilator može biti podešen, npr., orijentiranjem u prostoru ili promjenom temperature kristala, što uzrokuje male promjene frekvencije zračenja (J. A. Giordmaine i R. C. Miller, 1966; S. A. Ahmanov, A. I. Kovrigin, A. S. Piskaraltas, V. V. Fadjejev i R. V. Holihov, 1966).

LIT.: P. Fleury, J. P. Mathieu, Lumière. Eyrolles, Paris 1961. — M. Cagnet, M. Françon, J. C. Thrierr, Atlas optischer Erscheinungen. Springer-Verlag, Berlin 1962. — R. W. Ditchburn, Light. Blackie and Son, London 1963. — M. Paić, Fizička mjerenja I. Školska knjiga, Zagreb 1963. — The Feyman Lectures on Physics II. Addison Wesley, Reading, Massachusets 1966. — G. W. Stroke, An Introduction to Coherent Optics and Holography. Academic Press, New York 1966. — M. Paić, Fizička mjerenja II. Školska knjiga, Zagreb 1967. — R. W. Pohl, Optik und Atomphysik. Springer-Verlag, Berlin 1967. — Berkeley Cours de Physique III, Ondes. Armand Colin, Paris 1968. — O. S. Heavens, Optical Properties of Thin Solid Films. Dover INC, New York 1968. — G. Kortüm, Reflexionsspektroskopie. Springer-Verlag 1969. — A. F. Harvey, Coherent Light. Wiley-Interscience, London 1970. — B. T. Graveley, Applied Optics, **12**, 2537, 1973. — E. Menzel, W. Mirandé, I. Weingärtner, Fourier — Optik und Holographie. Springer-Verlag, Wien 1973. — E. Hecht, Optics, Schaum's Outline Series. McGraw-Hill, New York 1955. — F. A. Jenkins, H. E. White, Fundamentals of Optics. McGraw-Hill-Kogakusha Ltd., Tokyo 1976. — M. Young, Optics und Lasers. Springer-Verlag, Berlin 1977. — M. Paić, Osnove fizike IV, Svjetlost. Liber, Zagreb 1984.

M. Paić

OPTOELEKTRONIKA, posebno područje elektronike u kojemu se primjenjuju pojave međudjelovanja svjetlosti (i bliskog infracrvenog i ultraljubičastog zračenja) i tvari. Sve su te pojave kvantne prirode, pa se u tom području isprepleću optika, kvantna fizika i elektronika.

Fotoelektrični efekt zapažen je još u prošlom stoljeću, pa su usporedo s drugim elektroničkim elementima konstruirani fotootpornik, fotoćelija, fotoelement, katodna cijev, ikonoskop i dr. (v. *Električna mjerenja*, TE3, str. 641; v. *Elektronika, sastavni dijelovi*, TE4, str. 466). Znatniji razvoj optoelektronike počeo je primjenom poluvodičkih materijala oko 1960. godine i konstruiranjem prvih svjetlećih dioda (v. *Poluvodiči*). To su bili izvori svjetla načinjeni od binarnog III-V spoja GaP i ternarne krute otopine GaAs_xP_{1-x}, te binarnog III-V spoja GaAs koji emitira zračenje u infracrvenom području valne duljine ~0,9µm (H. C. Casey i F.A. Trumbore, 1970). Prvi GaAs poluvodički laser na niskoj temperaturi proradio je 1962. godine (R. N. Hall. M. I. Nathan, 1962). Kako se radilo o PN-spoju jednog poluvodički laser i s heterospojevima (spojevi između dva poluvodiča srazličitim energetskim procijepima i indeksima loma), koji su radili s mnogo slabijim strujama. Ubrzo se pojavio GaAs--Al_xGa_{1-x}As jednostruki heterostrukturni laser sniženog praga (I. Hayashi, H. Kressel. H. Nelson, 1969), te konačno takav laser dvostruke heterostrukture, koji je radio kontinuirano na sobnoj temperaturi (I. Hayashi, 1970; Zh. Alferov, 1971). Praktički razvoj visokoemisivnih poluvodički svjetlećih dioda injekcijskih lasera bio je omogućen ostvarenjem kontinuiranog rada na sobnoj temperaturi

Razvoj fotodetektora počeo je još ranije, pojavom fotoemisivnog detektora i fotomultiplikatora, a kasnije fotodiode i fotootpornika. Tzv. PIN-dioda i lavinska fotodioda važna su dostignuća u tehnici fotodetektora.

OPTOELEKTRONIČKI IZVORI ZRAČENJA

Poluvodički laser. Prikladnim dotiranjem u poluvodičima mogu se manjinski nosioci injektirati kroz PN-prijelaze, te se tada induciranim prijelazima rekombiniraju s većinskim nosiocima i proizvode stimulirano zračenje. Pri tom elektroni prelaze iz stanja na rubu vodljivog pojasa u stanje na rubu valentnog pojasa, te nastaje foton takve frekvencije koja odgo-